帳號:guest(3.149.245.245)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝忻倜
作者(外文):Hsieh, Hsin-Ti
論文名稱(中文):內側眼窩額葉皮質活化對恐懼消除記憶的影響
論文名稱(外文):Activation of the Medial Orbitofrontal Cortex on Fear Extinction
指導教授(中文):張鈞惠
指導教授(外文):Chang, Chun-Hui
口試委員(中文):嚴震東
林士傑
賴文崧
游一龍
學位類別:碩士
校院名稱:國立清華大學
系所名稱:系統神經科學研究所
學號:107080532
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:28
中文關鍵詞:內側眼窩額葉皮質帕夫洛夫恐懼消除藥理學活化
外文關鍵詞:medial orbitofrontal cortexPavlovian fear extinctionpharmacological activation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:22
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在過去的文獻中指出,齧齒類動物的內側眼窩額葉皮質主動的參與在獎賞類的決策行為之中,內側眼窩額葉皮質有神經投射到各個組成恐懼迴路的腦區,其中包含杏仁核、內側前額葉、以及海馬迴,這幾個腦區在恐懼制約及消除行為中都佔有相當重要的角色。在我們實驗室先前的實驗中,我們發現活化外側眼窩額葉皮質會干擾恐懼消除的學習,在這個實驗中,我們則要研究活化內側眼窩額葉皮質對於恐懼迴路以及恐懼消除記憶的影響。
我們的行為程序是三天的帕夫洛夫恐懼制約及消除實驗,其中以大鼠的靜止作為恐懼反應的指標,並在各個階段進行記錄。在第一天,所有的大鼠都會接受聲音與電擊的配對,在第二天,半數的動物接受恐懼消除實驗,另外半數則不做特別處置,在第三天,所有的動物都會接受聲音刺激以的測試其恐懼記憶的形成。 內側眼窩額葉皮質會在三個不同的時間點接受N-甲基-D-天門冬胺酸的活化或是生理食鹽水作為控制組,三個時間點分別為:恐懼消除記憶的形成、固化、以及提取階段。
我們的實驗結果顯示,在執行恐懼記憶消除實驗之前活化內側眼窩額葉皮質會完全阻礙恐懼消除記憶的形成,但在執行恐懼記憶消除實驗之後活化內側眼窩額葉皮質則對恐懼消除記憶的固化沒有影響。在測試階段之前活化內側眼窩額葉皮質對恐懼消除記憶的提取影響則未明,由於測試時的行為受到藥物的直接影響,動物的恐懼反應皆隨著時間由低向高逐漸攀升,故無法用來判斷記憶的提取與否。綜合上述結果,我們結論內側眼窩額葉皮質在恐懼記憶消除的過程中扮演重要的調控角色。
The medial orbitofrontal cortex (mOFC) in rodent has been shown to be involved in the reward-based decision-making process. The mOFC sends projections to several brain areas of the fear circuit, including the amygdala, the medial prefrontal cortex (mPFC), and the hippocampus (HPC), which are important for fear learning as well as extinction. In our previous studies, we reported that the activation of lateral orbitofrontal cortex (lOFC) interferes with extinction learning. In this study, we are interested in the regulation of the mOFC on the fear circuit and fear extinction memory.
We used a 3-Day Pavlovian fear conditioning and extinction protocol and recorded the learned fear measured by freezing level during each behavioral phase. On Day 1, all rats were conditioned with the tone-footshock pairs. On Day 2, the rats underwent the extinction (tone) or exposure (no tone) procedure. On Day 3, all rats were presented with tones to test their memory of fear extinction. The mOFC was activated with N-methyl-D-acidic acid (NMDA) or saline (control group) through the pre-implanted cannula at three different time points: the acquisition, consolidation, or retrieval phase of extinction.
Our results suggested that pre-extinction activation of the mOFC abolished the acquisition of fear extinction, while post-extinction activation of the mOFC had no effects on consolidation of extinction memory. The effects of pre-test activation of the mOFC cannot be concluded since the deviation in behavior could result from either the alternation in fear expression and/or memory retrieval. Furthermore, there were similar patterns of behavioral change under the effects of the drug, where the freezing levels were low in the early trials and increased gradually. Together, our results indicated that the mOFC is critically involved in the regulation of fear extinction memory.
中文摘要 1
Abstract 2
致謝 3
Table of content 4
Introduction 5
Materials and Methods 9
Subjects 9 Surgery 9
Experimental Design 9 Apparatus 10
Behavioral procedures and pharmacology 10
Drug infusion 10
Histology 11
Data analysis 11
Results 12
Experiment 1: Pre-EXT mOFC activation on acquisition of fear extinction 12
Experiment 2: Post-EXT mOFC activation on consolidation of fear extinction 13
Experiment 3: Pre-TEST mOFC activation on retrieval of fear extinction 14
Discussion 16
Reference 20
Figures 24
Anagnostaras SG, Maren S, Fanselow MS (1999) Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. Journal of Neuroscience 19:1106-1114.
Anagnostaras SG, Gale GD, Fanselow MS (2001) Hippocampus and contextual fear conditioning: recent controversies and advances. Hippocampus 11:8-17.
Bechara A, Damasio H, Tranel D, Damasio AR (1997) Deciding advantageously before knowing the advantageous strategy. Science 275:1293-1295.
Bechara A, Tranel D, Damasio H, Adolphs R, Rockland C, Damasio AR (1995) Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269:1115-1118.
Bocchio M, McHugh SB, Bannerman DM, Sharp T, Capogna M (2016) Serotonin, amygdala and fear: assembling the puzzle. Frontiers in neural circuits 10:24.
Bouton ME (2004) Context and behavioral processes in extinction. Learning & memory 11:485-494.
Bush DE, Caparosa EM, Gekker A, LeDoux J (2010) Beta-adrenergic receptors in the lateral nucleus of the amygdala contribute to the acquisition but not the consolidation of auditory fear conditioning. Frontiers in behavioral neuroscience 4:154.
Byrne JH, LaBar KS, LeDoux JE, Schafe GE, Thompson RF (2014) Learning and memory: basic mechanisms. In: From Molecules to Networks, pp 591-637: Elsevier.
Canteras N, Swanson L (1992) Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract‐tracing study in the rat. Journal of Comparative Neurology 324:180-194.
Chang Y-H, Liu S-W, Chang C-h (2018) Pharmacological activation of the lateral orbitofrontal cortex on regulation of learned fear and extinction. Neurobiology of learning and memory 148:30-37.
Cho J-H, Deisseroth K, Bolshakov VY (2013) Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron 80:1491-1507.
Choi DC, Maguschak KA, Ye K, Jang S-W, Myers KM, Ressler KJ (2010) Prelimbic cortical BDNF is required for memory of learned fear but not extinction or innate fear. Proceedings of the National Academy of Sciences 107:2675-2680.
Clugnet M-C, LeDoux JE (1990) Synaptic plasticity in fear conditioning circuits: induction of LTP in the lateral nucleus of the amygdala by stimulation of the medial geniculate body. Journal of Neuroscience 10:2818-2824.
Cosmides L, Tooby J (2000) Evolutionary psychology and the emotions. Handbook of emotions 2:91-115.
Costanzi M, Saraulli D, Cannas S, D’Alessandro F, Florenzano F, Rossi-Arnaud C, Cestari V (2014) Fear but not fright: re-evaluating traumatic experience attenuates anxiety-like behaviors after fear conditioning. Frontiers in Behavioral Neuroscience 8.
Fettes P, Schulze L, Downar J (2017) Cortico-striatal-thalamic loop circuits of the orbitofrontal cortex: promising therapeutic targets in psychiatric illness. Frontiers in systems neuroscience 11:25.
Herry C, Ciocchi S, Senn V, Demmou L, Müller C, Lüthi A (2008) Switching on and off fear by distinct neuronal circuits. Nature 454:600.
Hoover WB, Vertes RP (2011) Projections of the medial orbital and ventral orbital cortex in the rat. Journal of Comparative Neurology 519:3766-3801.
Izquierdo A (2017) Functional heterogeneity within rat orbitofrontal cortex in reward learning and decision making. Journal of Neuroscience 37:10529-10540.
Johansen JP, Cain CK, Ostroff LE, LeDoux JE (2011) Molecular mechanisms of fear learning and memory. Cell 147:509-524.
Kandel ER, Dudai Y, Mayford MR (2014) The molecular and systems biology of memory. Cell 157:163-186.
Kim JJ, Fanselow MS (1992) Modality-specific retrograde amnesia of fear. Science 256:675-677.
Kim JJ, Jung MW (2006) Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neuroscience & Biobehavioral Reviews 30:188-202.
Kim WB, Cho J-H (2017) Encoding of discriminative fear memory by input-specific LTP in the amygdala. Neuron 95:1129-1146. e1125.
Laurent V, Westbrook RF (2009) Inactivation of the infralimbic but not the prelimbic cortex impairs consolidation and retrieval of fear extinction. Learning & memory 16:520-529.
LeDoux JE (2000) Emotion circuits in the brain. Annual review of neuroscience 23:155-184.
LeDoux JE, Farb C, Ruggiero DA (1990) Topographic organization of neurons in the acoustic thalamus that project to the amygdala. Journal of Neuroscience 10:1043-1054.
LeDoux JE, Iwata J, Cicchetti P, Reis DJ (1988) Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. Journal of Neuroscience 8:2517-2529.
Lin C-H, Yeh S-H, Lu H-Y, Gean P-W (2003) The similarities and diversities of signal pathways leading to consolidation of conditioning and consolidation of extinction of fear memory. Journal of Neuroscience 23:8310-8317.
MacLean PD (1949) Psychosomatic disease and the" visceral brain"; recent developments bearing on the Papez theory of emotion. Psychosomatic medicine.
Makkar SR, Zhang SQ, Cranney J (2010) Behavioral and neural analysis of GABA in the acquisition, consolidation, reconsolidation, and extinction of fear memory. Neuropsychopharmacology 35:1625.
Mar AC, Walker AL, Theobald DE, Eagle DM, Robbins TW (2011) Dissociable effects of lesions to orbitofrontal cortex subregions on impulsive choice in the rat. Journal of Neuroscience 31:6398-6404.
Maren S (2001) Neurobiology of Pavlovian fear conditioning. Annual review of neuroscience 24:897-931.
Maren S, Fanselow MS (1997) Electrolytic lesions of the fimbria/fornix, dorsal hippocampus, or entorhinal cortex produce anterograde deficits in contextual fear conditioning in rats. Neurobiology of learning and memory 67:142-149.
Maren S, Quirk GJ (2004) Neuronal signalling of fear memory. Nature Reviews Neuroscience 5:844-852.
McGaugh JL (2000) Memory--a century of consolidation. Science 287:248-251.
Muller JF, Mascagni F, McDonald AJ (2006) Pyramidal cells of the rat basolateral amygdala: synaptology and innervation by parvalbumin‐immunoreactive interneurons. Journal of Comparative Neurology 494:635-650.
Muller JF, Mascagni F, McDonald AJ (2007) Postsynaptic targets of somatostatin‐containing interneurons in the rat basolateral amygdala. Journal of Comparative Neurology 500:513-529.
Nogueira R, Abolafia JM, Drugowitsch J, Balaguer-Ballester E, Sanchez-Vives MV, Moreno-Bote R (2017) Lateral orbitofrontal cortex anticipates choices and integrates prior with current information. Nature Communications 8:14823.
Pavlov IP (1927) Conditional reflexes: an investigation of the physiological activity of the cerebral cortex.
Quirk GJ, Repa JC, LeDoux JE (1995) Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron 15:1029-1039.
Rodriguez-Romaguera J, Do-Monte FH, Tanimura Y, Quirk GJ, Haber SN (2015) Enhancement of fear extinction with deep brain stimulation: evidence for medial orbitofrontal involvement. Neuropsychopharmacology 40:1726.
Schafe GE, Atkins CM, Swank MW, Bauer EP, Sweatt JD, LeDoux JE (2000) Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. Journal of Neuroscience 20:8177-8187.
Schoenbaum G, Roesch MR, Stalnaker TA (2006) Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci 29:116-124.
Schoenbaum G, Roesch MR, Stalnaker TA, Takahashi YK (2009) A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat Rev Neurosci 10:885-892.
Sejnowski TJ (1999) The book of Hebb. Neuron 24:773-776.
Senn V, Wolff SB, Herry C, Grenier F, Ehrlich I, Gründemann J, Fadok JP, Müller C, Letzkus JJ, Lüthi A (2014) Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81:428-437.
Sotres-Bayon F, Quirk GJ (2010) Prefrontal control of fear: more than just extinction. Current opinion in neurobiology 20:231-235.
Stalnaker TA, Cooch NK, Schoenbaum G (2015) What the orbitofrontal cortex does not do. Nature neuroscience 18:620.
Tovote P, Fadok JP, Lüthi A (2015) Neuronal circuits for fear and anxiety. Nature Reviews Neuroscience 16:317.
Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32-58.
Watson JB, Rayner R (1920) Conditioned emotional reactions. Journal of experimental psychology 3:1.
WINSTANLEY CA (2007) The Orbitofrontal Cortex, Impulsivity, and Addiction. Annals of the New York Academy of Sciences 1121:639-655.
Yamada H, Louie K, Tymula A, Glimcher PW (2018) Free choice shapes normalized value signals in medial orbitofrontal cortex. Nature communications 9:162.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *