|
1. Sankaranarayanan, R. and J. Ferlay, Worldwide burden of gynaecological cancer: the size of the problem. Best Pract Res Clin Obstet Gynaecol, 2006. 20(2): p. 207-25. 2. McCluggage, W.G., Morphological subtypes of ovarian carcinoma: a review with emphasis on new developments and pathogenesis. Pathology, 2011. 43(5): p. 420-32. 3. Reid, B.M., J.B. Permuth, and T.A. Sellers, Epidemiology of ovarian cancer: a review. Cancer biology & medicine, 2017. 14(1): p. 9-32. 4. Brachova, P., et al., TP53 oncomorphic mutations predict resistance to platinum and taxanebased standard chemotherapy in patients diagnosed with advanced serous ovarian carcinoma. Int J Oncol, 2015. 46(2): p. 607-18. 5. Olivier, M., M. Hollstein, and P. Hainaut, TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harbor perspectives in biology, 2010. 2(1): p. a001008-a001008. 6. Cole, A.J., et al., Assessing mutant p53 in primary high-grade serous ovarian cancer using immunohistochemistry and massively parallel sequencing. Sci Rep, 2016. 6: p. 26191. 7. Hamroun, D., et al., The UMD TP53 database and website: update and revisions. Hum Mutat, 2006. 27(1): p. 14-20. 8. Olivier, M., et al., The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat, 2002. 19(6): p. 607-14. 9. Joerger, A.C. and A.R. Fersht, Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene, 2007. 26(15): p. 2226-42. 10. Oren, M. and V. Rotter, Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol, 2010. 2(2): p. a001107. 11. Adorno, M., et al., A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell, 2009. 137(1): p. 87-98. 12. Muller, P.A., et al., Mutant p53 drives invasion by promoting integrin recycling. Cell, 2009. 139(7): p. 1327-41. 13. Sauer, L., et al., Mutant p53 initiates a feedback loop that involves Egr-1/EGF receptor/ERK in prostate cancer cells. Oncogene, 2010. 29(18): p. 2628-37. 14. Wang, W., et al., Mutant p53-R273H gains new function in sustained activation of EGFR signaling via suppressing miR-27a expression. Cell Death Dis, 2013. 4: p. e574. 15. Yallowitz, A.R., et al., Mutant p53 Amplifies Epidermal Growth Factor Receptor Family Signaling to Promote Mammary Tumorigenesis. Mol Cancer Res, 2015. 13(4): p. 743-54. 16. Muller, P.A.J. and K.H. Vousden, Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer cell, 2014. 25(3): p. 304-317. 17. Hanel, W., et al., Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death Differ, 2013. 20(7): p. 898-909. 18. Lee, J.G., et al., Mutant p53 promotes ovarian cancer cell adhesion to mesothelial cells via integrin beta4 and Akt signals. Sci Rep, 2015. 5: p. 12642. 19. Steelman, L.S., et al., Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging, 2011. 3(3): p. 192-222. 20. Martelli, A.M., et al., The emerging multiple roles of nuclear Akt. Biochim Biophys Acta, 2012. 1823(12): p. 2168-78. 21. Mayo, L.D. and D.B. Donner, A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(20): p. 11598-11603. 22. Huang, W.C., et al., Nuclear translocation of epidermal growth factor receptor by Akt-dependent phosphorylation enhances breast cancer-resistant protein expression in gefitinib-resistant cells. J Biol Chem, 2011. 286(23): p. 20558-68. 23. Brand, T.M., et al., Nuclear EGFR as a molecular target in cancer. Radiother Oncol, 2013. 108(3): p. 370-7. 24. Vasey, P.A., Resistance to chemotherapy in advanced ovarian cancer: mechanisms and current strategies. Br J Cancer, 2003. 89 Suppl 3: p. S23-8. 25. Siwak, D.R., et al., Targeting the epidermal growth factor receptor in epithelial ovarian cancer: current knowledge and future challenges. J Oncol, 2010. 2010: p. 568938. 26. Gui, T. and K. Shen, The epidermal growth factor receptor as a therapeutic target in epithelial ovarian cancer. Cancer Epidemiol, 2012. 36(5): p. 490-6. 27. Sheng, Q. and J. Liu, The therapeutic potential of targeting the EGFR family in epithelial ovarian cancer. British journal of cancer, 2011. 104(8): p. 1241-1245. 28. Mayr, D., et al., Analysis of gene amplification and prognostic markers in ovarian cancer using comparative genomic hybridization for microarrays and immunohistochemical analysis for tissue microarrays. Am J Clin Pathol, 2006. 126(1): p. 101-9. 29. Ginath, S., et al., Expression of heparanase, Mdm2, and erbB2 in ovarian cancer. Int J Oncol, 2001. 18(6): p. 1133-44. 30. Dogan, E., et al., p53 and mdm2 as prognostic indicators in patients with epithelial ovarian cancer: a multivariate analysis. Gynecol Oncol, 2005. 97(1): p. 46-52. 31. Chang, S.J., et al., Proteomic investigating the cooperative lethal effect of EGFR and MDM2 inhibitors on ovarian carcinoma. Arch Biochem Biophys, 2018. 647: p. 10-32. 32. Chou, T.C. and P. Talalay, Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul, 1984. 22: p. 27-55. 33. Hudson, L.G., et al., Activated epidermal growth factor receptor in ovarian cancer. Cancer treatment and research, 2009. 149: p. 203-226. 34. Lafky, J.M., et al., Clinical implications of the ErbB/epidermal growth factor (EGF) receptor family and its ligands in ovarian cancer. Biochim Biophys Acta, 2008. 1785(2): p. 232-65. 35. Meier, R., et al., Mitogenic activation, phosphorylation, and nuclear translocation of protein kinase Bβ. Journal of Biological Chemistry, 1997. 272(48): p. 30491-30497. 36. Leinninger, G.M., et al., Phosphatidylinositol 3-kinase and Akt effectors mediate insulin-like growth factor-I neuroprotection in dorsal root ganglia neurons. The FASEB journal, 2004. 18(13): p. 1544-1546. 37. Borgatti, P., et al., Threonine 308 phosphorylated form of Akt translocates to the nucleus of PC12 cells under nerve growth factor stimulation and associates with the nuclear matrix protein nucleolin. Journal of cellular physiology, 2003. 196(1): p. 79-88. 38. Tzivion, G., M. Dobson, and G. Ramakrishnan, FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta, 2011. 1813(11): p. 1938-45. 39. Chou, T.C., Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev, 2006. 58(3): p. 621-81. 40. Brosh, R. and V. Rotter, When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer, 2009. 9(10): p. 701-13. 41. Arden, K.C. and W.H. Biggs, 3rd, Regulation of the FoxO family of transcription factors by phosphatidylinositol-3 kinase-activated signaling. Arch Biochem Biophys, 2002. 403(2): p. 292-8. 42. Zhang, X., et al., Akt, FoxO and regulation of apoptosis. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2011. 1813(11): p. 1978-1986. 43. Mayo, L.D., et al., PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. Journal of Biological Chemistry, 2002. 277(7): p. 5484-5489. 44. Moll, U.M. and O. Petrenko, The MDM2-p53 interaction. Mol Cancer Res, 2003. 1(14): p. 1001-8. 45. Wang, J., et al., AKT Hyperactivation and the Potential of AKT-Targeted Therapy in Diffuse Large B-Cell Lymphoma. Am J Pathol, 2017. 187(8): p. 1700-1716. 46. Lo, H.W., et al., Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res, 2005. 65(1): p. 338-48. 47. Chaar, I., et al., Relationship between MDM2 and p53 alterations in colorectal cancer and their involvement and prognostic value in the Tunisian population. Appl Immunohistochem Mol Morphol, 2013. 21(3): p. 228-36. 48. Habashy, H.O., et al., FOXO3a nuclear localisation is associated with good prognosis in luminal-like breast cancer. Breast Cancer Res Treat, 2011. 129(1): p. 11-21. 49. Agarwal, R. and S.B. Kaye, Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nature Reviews Cancer, 2003. 3: p. 502. 50. Yang, W., N.G. Dolloff, and W.S. El-Deiry, ERK and MDM2 prey on FOXO3a. Nature Cell Biology, 2008. 10: p. 125. |