帳號:guest(3.22.79.103)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉雅欣
作者(外文):Liu, Ya-Hsin
論文名稱(中文):研究趨化素受體CXCR3N端和胞外區域 對趨化因子CXCL4與CXCL4L1的協同交互作用
論文名稱(外文):Synergistic effect of CXCR3 N-terminal fragment and extracellular loops in the recognition of chemokine ligands, CXCL4 and CXCL4L1
指導教授(中文):蘇士哲
指導教授(外文):Sue, Shih-Che
口試委員(中文):鄭惠春
吳宗遠
余慈顏
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:107080523
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:77
中文關鍵詞:趨化素受體趨化素受體胞外片段
外文關鍵詞:CXCR3CXCL4CXCL4L1
相關次數:
  • 推薦推薦:0
  • 點閱點閱:21
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
CXCL4屬於CXC類型的趨化素,在生理條件下CXCL4的單體會聚集成四聚體的結構,CXCL4除了趨化細胞的功能之外,也會和受體做專一性的結合,在癌症研究中具有抗血管新生的作用。CXCL4L1則為CXCL4的變異體,兩種趨化素間的差異在於C端有三個氨基酸的不同,造成CXCL4L1的C端螺旋結構會向外展開且具有較高的活動性,也因此在生理環境下CXCL4L1比起CXCL4更容易解離形成單體結構以促使CXCL4L1和下游受體產生結合,而具有更好的抗血管新生作用。 CXCL4和CXCL4L1的受體均為CXCR3,根據不同的RNA splicing可以細分為CXCR3A和CXCR3B兩種亞型,CXCR3B的N端比3A多了52個氨基酸。CXCR3受體的N端有兩個經轉譯後修飾的硫酸化酪胺酸,在許多研究中發現帶有硫酸根的受體會促進受體與趨化素的結合反應。根據晶體結構與結合模型發現受體和趨化素是透過一對一結合,因此在本實驗中會將趨化素突變成單體,並且將CXCR3的胞外區域構築於支架蛋白GB1之上,再藉由核磁共振探討CXCL4/CXCL4L1與CXCR3A/B不同胞外區域的結合選擇性與結合能力的差異,並分析滴定不同濃度的受體模擬蛋白造成的光譜變化,以得出結合曲線與解離常數。在滴定實驗中可以發現,CXCR3受體的N端可以促進受體與CXCL4或CXCL4L1之間的結合能力,而其他三個受體的胞外片段則沒有促進結合的現象。此外透過光譜的變化發現CXCL4L1對CXCR3可能具有更好的結合能力。
CXCL4 and CXCL4L1 belong to CXC-type chemokine family, exhibiting multiple activities in biology. The two chemokines have notable biological functions related with anti-angiogenesis and inflammatory cell recruitment. CXCL4L1, acting as a more potent anti-angiogenic ligand, is a homologue of CXCL4, which differs from CXCL4 in three residues in C-terminal helix. The difference introduces structural flexibility in CXCL4L1 and causes different orientation of the C-terminal helix. CXCL4L1 and CXCL4 execute their functions through binding membrane receptors, CXCR3A and CXCR3B. The only difference between two receptors is the existence of a 52-residue at CXCR3B N-terminal end if comparing with CXCR3A. To understand the binding specificity between CXCR3A/CXCR3B and the two chemokine ligands, we prepared artificial CXCL4 and CXCL4L1 mutants favorably adopting monomeric formations. We further developed a model protein system by transplanting the individual CXCR3A/B extracellular elements including N-terminal region and three extracellular loops on a scaffold protein, GB1. Through solution NMR titration experiments, we can observe the CXCL4/CXCL4L1 resonances perturbed by the presence of the extracellular elements. The result, therefore, allow us to determine the binding affinities and characterize the binding sites. In the study, we observed the three extracellular loops contributing significantly and equally in recruiting CXCL4 and CXCL4L1. The derived binding affinities (Kd) showed less distinguishable difference. However, when the CXCR3A N-terminus co-exist with extracellular loop 2 on the scaffold GB1 protein, the affinities were enhanced for three times where the sulfotyrosine residues provides significant binding specificity in anchoring on the chemokine ligands. The result indicates how the N-terminus contributes to the interaction between CXCL4 and CXCR3. We conclude the synergistic effect of CXCR3 N-terminal fragment and the extracellular loops in recognizing of CXCL4 and CXCL4L1.
CONTENT
Abstract I
中文摘要 II
誌謝 III
Abbreviations IV
Chapter 1. Introduction 1
1.1 Chemokine 1
1.1.1 Chemokine category 1
1.1.2 CXCL4 (PF4) 2
1.1.3 CXCL4L1 (PF4V1) 3
1.2 G protein-couple receptor (GPCR) 3
1.2.1 GPCR 3
1.2.2 The chemokine receptor 4
1.2.3 The chemokine receptor-ligand complex 5
1.2.4 The two-site binding model of chemokine and chemokine receptor 5
1.3 C-X-C type chemokine receptor 3 (CXCR3) 6
1.3.1 CXCR3 function and selectivity 6
1.3.2 CXCR3A/B interact with CXCL4/CXCL4L1 7
1.4 The strategy of the study 10
Chapter 2. Materials and methods 11
2.1 Materials 11
2.2 CXCL4 Cloning, expression and purification 11
2.3 CXCL4L1 Cloning, expression and purification 12
2.4 Soluble receptor mimics cloning, expression and purification 13
2.4.1 Substitution of Cys to Ser 14
2.4.2 The purification of GB1 protein 14
2.5 Nuclear magnetic resonance (NMR) spectroscopy 15
Chapter 3. Results 17
3.1 The binding of CXCL4 to the N-terminus of CXCR3 17
3.1.1 The strategy of experiment design 17
3.1.2 Binding of GB1 18
3.1.2 Binding of GB1-ECL2 18
3.1.3 Contribution derived from CXCR3 N-terminal fragments 19
3.1.4 Contribution derived from sulfated CXCR3 N-terminus 20
3.2 Binding of three extracellular loops with CXCL4 21
3.3 The binding of sulfotyrosine and sulfated CXCR3A peptide on CXCL4 22
3.4 The binding of CXCL4L1 to the N-terminus of CXCR3 23
3.4.1 Binding of GB1-ECL2 23
3.4.2 Contribution derived from CXCR3 N-terminal fragments 24
3.4.3 Contribution derived from sulfated CXCR3 N-terminus 25
3.5 Binding of three extracellular loops with CXCL4L1 25
Chapter 4. Discussion 27
Reference 66
Appendix 70

Reference
1 Sokol, C. L. & Luster, A. D. The chemokine system in innate immunity. Cold Spring Harb Perspect Biol 7, doi:10.1101/cshperspect.a016303 (2015).
2 Mikhak, Z. & Luster, A. D. in Middleton's Allergy (Eighth Edition) (eds N. Franklin Adkinson et al.) 98-112 (Content Repository Only!, 2014).
3 Moser, B. et al. Interleukin-8 antagonists generated by N-terminal modification. The Journal of biological chemistry 268, 7125-7128 (1993).
4 Belperio, J. A. et al. CXC chemokines in angiogenesis. Journal of leukocyte biology 68, 1-8 (2000).
5 Le, Y., Zhou, Y., Iribarren, P. & Wang, J. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol 1, 95-104 (2004).
6 Bazan, J. F. et al. A new class of membrane-bound chemokine with a CX3C motif. Nature 385, 640-644, doi:10.1038/385640a0 (1997).
7 Marcuzzi, E., Angioni, R., Molon, B. & Calì, B. Chemokines and Chemokine Receptors: Orchestrating Tumor Metastasization. Int J Mol Sci 20, 96, doi:10.3390/ijms20010096 (2018).
8 Jacquelot, N., Duong, C. P. M., Belz, G. T. & Zitvogel, L. Targeting Chemokines and Chemokine Receptors in Melanoma and Other Cancers. Front Immunol 9, 2480-2480, doi:10.3389/fimmu.2018.02480 (2018).
9 Woller, G., Leonhardt, L., Kasper, B. & Petersen, F. Regulation of T cell chemotaxis by CXCL4. Cell Commun Signal 7, A94-A94, doi:10.1186/1478-811X-7-S1-A94 (2009).
10 Vandercappellen, J., Van Damme, J. & Struyf, S. The role of the CXC chemokines platelet factor-4 (CXCL4/PF-4) and its variant (CXCL4L1/PF-4var) in inflammation, angiogenesis and cancer. Cytokine Growth Factor Rev 22, 1-18, doi:10.1016/j.cytogfr.2010.10.011 (2011).
11 Wang, Z. & Huang, H. Platelet factor-4 (CXCL4/PF-4): an angiostatic chemokine for cancer therapy. Cancer Lett 331, 147-153, doi:10.1016/j.canlet.2013.01.006 (2013).
12 Mueller, A. et al. CXCL4-induced migration of activated T lymphocytes is mediated by the chemokine receptor CXCR3. Journal of Leukocyte Biology 83, 875-882, doi:10.1189/jlb.1006645 (2008).
13 Marti, F. et al. Platelet factor 4 induces human natural killer cells to synthesize and release interleukin-8. J Leukoc Biol 72, 590-597 (2002).
14 Zhang, X., Chen, L., Bancroft, D. P., Lai, C. K. & Maione, T. E. Crystal Structure of Recombinant Human Platelet Factor 4. Biochemistry 33, 8361-8366, doi:10.1021/bi00193a025 (1994).
15 Miller, M. C. & Mayo, K. H. Chemokines from a Structural Perspective. Int J Mol Sci 18, 2088, doi:10.3390/ijms18102088 (2017).
16 Green, C. J., Charles, R. S., Edwards, B. F. & Johnson, P. H. Identification and characterization of PF4varl, a human gene variant of platelet factor 4. Molecular and cellular biology 9, 1445-1451, doi:10.1128/mcb.9.4.1445 (1989).
17 Struyf, S. et al. Angiostatic and chemotactic activities of the CXC chemokine CXCL4L1 (platelet factor-4 variant) are mediated by CXCR3. Blood 117, 480-488, doi:10.1182/blood-2009-11-253591 (2011).
18 Kuo, J.-H. et al. Alternative C-terminal helix orientation alters chemokine function: structure of the anti-angiogenic chemokine, CXCL4L1. The Journal of biological chemistry 288, 13522-13533, doi:10.1074/jbc.M113.455329 (2013).
19 Gouwy, M. et al. CXCL4 and CXCL4L1 Differentially Affect Monocyte Survival and Dendritic Cell Differentiation and Phagocytosis. PloS one 11, e0166006-e0166006, doi:10.1371/journal.pone.0166006 (2016).
20 Weis, W. I. & Kobilka, B. K. The Molecular Basis of G Protein–Coupled Receptor Activation. Annual Review of Biochemistry 87, 897-919, doi:10.1146/annurev-biochem-060614-033910 (2018).
21 Li, J. et al. The Molecule Pages database. Nature 420, 716-717, doi:10.1038/nature01307 (2002).
22 Chemokine/chemokine receptor nomenclature. Cytokine 21, 48-49, doi:https://doi.org/10.1016/S1043-4666(02)00493-3 (2003).
23 Colvin, R. A., Campanella, G. S., Manice, L. A. & Luster, A. D. CXCR3 requires tyrosine sulfation for ligand binding and a second extracellular loop arginine residue for ligand-induced chemotaxis. Mol Cell Biol 26, 5838-5849, doi:10.1128/mcb.00556-06 (2006).
24 Arimont, M. et al. Structural Analysis of Chemokine Receptor-Ligand Interactions. J Med Chem 60, 4735-4779, doi:10.1021/acs.jmedchem.6b01309 (2017).
25 Kufareva, I., Salanga, C. L. & Handel, T. M. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol 93, 372-383, doi:10.1038/icb.2015.15 (2015).
26 Fricker, S. P. & Metz, M. Chemokine receptor modeling: an interdisciplinary approach to drug design. Future Med Chem 6, 91-114, doi:10.4155/fmc.13.194 (2014).
27 Rajagopalan, L. & Rajarathnam, K. Structural basis of chemokine receptor function--a model for binding affinity and ligand selectivity. Biosci Rep 26, 325-339, doi:10.1007/s10540-006-9025-9 (2006).
28 Kleist, A. B. et al. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. Biochem Pharmacol 114, 53-68, doi:10.1016/j.bcp.2016.04.007 (2016).
29 Joseph, P. R. B. & Rajarathnam, K. Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain. Protein Sci 24, 81-92, doi:10.1002/pro.2590 (2015).
30 Gustavsson, M. New insights into the structure and function of chemokine receptor:chemokine complexes from an experimental perspective. Journal of Leukocyte Biology n/a, doi:10.1002/jlb.2mr1219-288r.
31 Prado, G. N. et al. Chemokine signaling specificity: essential role for the N-terminal domain of chemokine receptors. Biochemistry 46, 8961-8968, doi:10.1021/bi7004043 (2007).
32 Xanthou, G., Williams, T. J. & Pease, J. E. Molecular characterization of the chemokine receptor CXCR3: evidence for the involvement of distinct extracellular domains in a multi-step model of ligand binding and receptor activation. Eur J Immunol 33, 2927-2936, doi:10.1002/eji.200324235 (2003).
33 Berchiche, Y. A. & Sakmar, T. P. CXC Chemokine Receptor 3 Alternative Splice Variants Selectively Activate Different Signaling Pathways. Molecular Pharmacology 90, 483-495, doi:10.1124/mol.116.105502 (2016).
34 Reynders, N. et al. The Distinct Roles of CXCR3 Variants and Their Ligands in the Tumor Microenvironment. Cells 8 (2019).
35 Smith, J. S. et al. C-X-C Motif Chemokine Receptor 3 Splice Variants Differentially Activate Beta-Arrestins to Regulate Downstream Signaling Pathways. Mol Pharmacol 92, 136-150, doi:10.1124/mol.117.108522 (2017).
36 Vandercappellen, J., Van Damme, J. & Struyf, S. The role of the CXC chemokines platelet factor-4 (CXCL4/PF-4) and its variant (CXCL4L1/PF-4var) in inflammation, angiogenesis and cancer. Cytokine & Growth Factor Reviews 22, 1-18, doi:https://doi.org/10.1016/j.cytogfr.2010.10.011 (2011).
37 Struyf, S. et al. Angiostatic and chemotactic activities of the CXC chemokine CXCL4L1 (platelet factor-4 variant) are mediated by CXCR3. Blood 117, 480-488, doi:10.1182/blood-2009-11-253591 (2011).
38 Hardy, D., Bill, Roslyn M., Jawhari, A. & Rothnie, Alice J. Overcoming bottlenecks in the membrane protein structural biology pipeline. Biochemical Society Transactions 44, 838-844, doi:10.1042/bst20160049 (2016).
39 Privé, G. G. Detergents for the stabilization and crystallization of membrane proteins. Methods 41, 388-397, doi:https://doi.org/10.1016/j.ymeth.2007.01.007 (2007).
40 Datta, A. & Stone, M. J. Soluble mimics of a chemokine receptor: chemokine binding by receptor elements juxtaposed on a soluble scaffold. Protein Sci 12, 2482-2491, doi:10.1110/ps.03254303 (2003).
41 Datta-Mannan, A. & Stone, M. J. Chemokine-binding specificity of soluble chemokine-receptor analogues: identification of interacting elements by chimera complementation. Biochemistry 43, 14602-14611, doi:10.1021/bi048990e (2004).
42 Barter, E. F. & Stone, M. J. Synergistic Interactions between Chemokine Receptor Elements in Recognition of Interleukin-8 by Soluble Receptor Mimics. Biochemistry 51, 1322-1331, doi:10.1021/bi201615y (2012).
43 Chen, Y.-P. et al. Oligomerization State of CXCL4 Chemokines Regulates G Protein-Coupled Receptor Activation. ACS Chemical Biology 12, 2767-2778, doi:10.1021/acschembio.7b00704 (2017).
44 Mayo, K. H. et al. Molten globule monomer to condensed dimer: role of disulfide bonds in platelet factor-4 folding and subunit association. Biochemistry 31, 12255-12265, doi:10.1021/bi00163a040 (1992).
45 Mayo, K. H. & Chen, M. J. Human platelet factor 4 monomer-dimer-tetramer equilibria investigated by proton NMR spectroscopy. Biochemistry 28, 9469-9478, doi:10.1021/bi00450a034 (1989).
46 Chen, Y. P. et al. Oligomerization State of CXCL4 Chemokines Regulates G Protein-Coupled Receptor Activation. ACS Chem Biol 12, 2767-2778, doi:10.1021/acschembio.7b00704 (2017).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *