|
Reference 1 Sokol, C. L. & Luster, A. D. The chemokine system in innate immunity. Cold Spring Harb Perspect Biol 7, doi:10.1101/cshperspect.a016303 (2015). 2 Mikhak, Z. & Luster, A. D. in Middleton's Allergy (Eighth Edition) (eds N. Franklin Adkinson et al.) 98-112 (Content Repository Only!, 2014). 3 Moser, B. et al. Interleukin-8 antagonists generated by N-terminal modification. The Journal of biological chemistry 268, 7125-7128 (1993). 4 Belperio, J. A. et al. CXC chemokines in angiogenesis. Journal of leukocyte biology 68, 1-8 (2000). 5 Le, Y., Zhou, Y., Iribarren, P. & Wang, J. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol 1, 95-104 (2004). 6 Bazan, J. F. et al. A new class of membrane-bound chemokine with a CX3C motif. Nature 385, 640-644, doi:10.1038/385640a0 (1997). 7 Marcuzzi, E., Angioni, R., Molon, B. & Calì, B. Chemokines and Chemokine Receptors: Orchestrating Tumor Metastasization. Int J Mol Sci 20, 96, doi:10.3390/ijms20010096 (2018). 8 Jacquelot, N., Duong, C. P. M., Belz, G. T. & Zitvogel, L. Targeting Chemokines and Chemokine Receptors in Melanoma and Other Cancers. Front Immunol 9, 2480-2480, doi:10.3389/fimmu.2018.02480 (2018). 9 Woller, G., Leonhardt, L., Kasper, B. & Petersen, F. Regulation of T cell chemotaxis by CXCL4. Cell Commun Signal 7, A94-A94, doi:10.1186/1478-811X-7-S1-A94 (2009). 10 Vandercappellen, J., Van Damme, J. & Struyf, S. The role of the CXC chemokines platelet factor-4 (CXCL4/PF-4) and its variant (CXCL4L1/PF-4var) in inflammation, angiogenesis and cancer. Cytokine Growth Factor Rev 22, 1-18, doi:10.1016/j.cytogfr.2010.10.011 (2011). 11 Wang, Z. & Huang, H. Platelet factor-4 (CXCL4/PF-4): an angiostatic chemokine for cancer therapy. Cancer Lett 331, 147-153, doi:10.1016/j.canlet.2013.01.006 (2013). 12 Mueller, A. et al. CXCL4-induced migration of activated T lymphocytes is mediated by the chemokine receptor CXCR3. Journal of Leukocyte Biology 83, 875-882, doi:10.1189/jlb.1006645 (2008). 13 Marti, F. et al. Platelet factor 4 induces human natural killer cells to synthesize and release interleukin-8. J Leukoc Biol 72, 590-597 (2002). 14 Zhang, X., Chen, L., Bancroft, D. P., Lai, C. K. & Maione, T. E. Crystal Structure of Recombinant Human Platelet Factor 4. Biochemistry 33, 8361-8366, doi:10.1021/bi00193a025 (1994). 15 Miller, M. C. & Mayo, K. H. Chemokines from a Structural Perspective. Int J Mol Sci 18, 2088, doi:10.3390/ijms18102088 (2017). 16 Green, C. J., Charles, R. S., Edwards, B. F. & Johnson, P. H. Identification and characterization of PF4varl, a human gene variant of platelet factor 4. Molecular and cellular biology 9, 1445-1451, doi:10.1128/mcb.9.4.1445 (1989). 17 Struyf, S. et al. Angiostatic and chemotactic activities of the CXC chemokine CXCL4L1 (platelet factor-4 variant) are mediated by CXCR3. Blood 117, 480-488, doi:10.1182/blood-2009-11-253591 (2011). 18 Kuo, J.-H. et al. Alternative C-terminal helix orientation alters chemokine function: structure of the anti-angiogenic chemokine, CXCL4L1. The Journal of biological chemistry 288, 13522-13533, doi:10.1074/jbc.M113.455329 (2013). 19 Gouwy, M. et al. CXCL4 and CXCL4L1 Differentially Affect Monocyte Survival and Dendritic Cell Differentiation and Phagocytosis. PloS one 11, e0166006-e0166006, doi:10.1371/journal.pone.0166006 (2016). 20 Weis, W. I. & Kobilka, B. K. The Molecular Basis of G Protein–Coupled Receptor Activation. Annual Review of Biochemistry 87, 897-919, doi:10.1146/annurev-biochem-060614-033910 (2018). 21 Li, J. et al. The Molecule Pages database. Nature 420, 716-717, doi:10.1038/nature01307 (2002). 22 Chemokine/chemokine receptor nomenclature. Cytokine 21, 48-49, doi:https://doi.org/10.1016/S1043-4666(02)00493-3 (2003). 23 Colvin, R. A., Campanella, G. S., Manice, L. A. & Luster, A. D. CXCR3 requires tyrosine sulfation for ligand binding and a second extracellular loop arginine residue for ligand-induced chemotaxis. Mol Cell Biol 26, 5838-5849, doi:10.1128/mcb.00556-06 (2006). 24 Arimont, M. et al. Structural Analysis of Chemokine Receptor-Ligand Interactions. J Med Chem 60, 4735-4779, doi:10.1021/acs.jmedchem.6b01309 (2017). 25 Kufareva, I., Salanga, C. L. & Handel, T. M. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol 93, 372-383, doi:10.1038/icb.2015.15 (2015). 26 Fricker, S. P. & Metz, M. Chemokine receptor modeling: an interdisciplinary approach to drug design. Future Med Chem 6, 91-114, doi:10.4155/fmc.13.194 (2014). 27 Rajagopalan, L. & Rajarathnam, K. Structural basis of chemokine receptor function--a model for binding affinity and ligand selectivity. Biosci Rep 26, 325-339, doi:10.1007/s10540-006-9025-9 (2006). 28 Kleist, A. B. et al. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. Biochem Pharmacol 114, 53-68, doi:10.1016/j.bcp.2016.04.007 (2016). 29 Joseph, P. R. B. & Rajarathnam, K. Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain. Protein Sci 24, 81-92, doi:10.1002/pro.2590 (2015). 30 Gustavsson, M. New insights into the structure and function of chemokine receptor:chemokine complexes from an experimental perspective. Journal of Leukocyte Biology n/a, doi:10.1002/jlb.2mr1219-288r. 31 Prado, G. N. et al. Chemokine signaling specificity: essential role for the N-terminal domain of chemokine receptors. Biochemistry 46, 8961-8968, doi:10.1021/bi7004043 (2007). 32 Xanthou, G., Williams, T. J. & Pease, J. E. Molecular characterization of the chemokine receptor CXCR3: evidence for the involvement of distinct extracellular domains in a multi-step model of ligand binding and receptor activation. Eur J Immunol 33, 2927-2936, doi:10.1002/eji.200324235 (2003). 33 Berchiche, Y. A. & Sakmar, T. P. CXC Chemokine Receptor 3 Alternative Splice Variants Selectively Activate Different Signaling Pathways. Molecular Pharmacology 90, 483-495, doi:10.1124/mol.116.105502 (2016). 34 Reynders, N. et al. The Distinct Roles of CXCR3 Variants and Their Ligands in the Tumor Microenvironment. Cells 8 (2019). 35 Smith, J. S. et al. C-X-C Motif Chemokine Receptor 3 Splice Variants Differentially Activate Beta-Arrestins to Regulate Downstream Signaling Pathways. Mol Pharmacol 92, 136-150, doi:10.1124/mol.117.108522 (2017). 36 Vandercappellen, J., Van Damme, J. & Struyf, S. The role of the CXC chemokines platelet factor-4 (CXCL4/PF-4) and its variant (CXCL4L1/PF-4var) in inflammation, angiogenesis and cancer. Cytokine & Growth Factor Reviews 22, 1-18, doi:https://doi.org/10.1016/j.cytogfr.2010.10.011 (2011). 37 Struyf, S. et al. Angiostatic and chemotactic activities of the CXC chemokine CXCL4L1 (platelet factor-4 variant) are mediated by CXCR3. Blood 117, 480-488, doi:10.1182/blood-2009-11-253591 (2011). 38 Hardy, D., Bill, Roslyn M., Jawhari, A. & Rothnie, Alice J. Overcoming bottlenecks in the membrane protein structural biology pipeline. Biochemical Society Transactions 44, 838-844, doi:10.1042/bst20160049 (2016). 39 Privé, G. G. Detergents for the stabilization and crystallization of membrane proteins. Methods 41, 388-397, doi:https://doi.org/10.1016/j.ymeth.2007.01.007 (2007). 40 Datta, A. & Stone, M. J. Soluble mimics of a chemokine receptor: chemokine binding by receptor elements juxtaposed on a soluble scaffold. Protein Sci 12, 2482-2491, doi:10.1110/ps.03254303 (2003). 41 Datta-Mannan, A. & Stone, M. J. Chemokine-binding specificity of soluble chemokine-receptor analogues: identification of interacting elements by chimera complementation. Biochemistry 43, 14602-14611, doi:10.1021/bi048990e (2004). 42 Barter, E. F. & Stone, M. J. Synergistic Interactions between Chemokine Receptor Elements in Recognition of Interleukin-8 by Soluble Receptor Mimics. Biochemistry 51, 1322-1331, doi:10.1021/bi201615y (2012). 43 Chen, Y.-P. et al. Oligomerization State of CXCL4 Chemokines Regulates G Protein-Coupled Receptor Activation. ACS Chemical Biology 12, 2767-2778, doi:10.1021/acschembio.7b00704 (2017). 44 Mayo, K. H. et al. Molten globule monomer to condensed dimer: role of disulfide bonds in platelet factor-4 folding and subunit association. Biochemistry 31, 12255-12265, doi:10.1021/bi00163a040 (1992). 45 Mayo, K. H. & Chen, M. J. Human platelet factor 4 monomer-dimer-tetramer equilibria investigated by proton NMR spectroscopy. Biochemistry 28, 9469-9478, doi:10.1021/bi00450a034 (1989). 46 Chen, Y. P. et al. Oligomerization State of CXCL4 Chemokines Regulates G Protein-Coupled Receptor Activation. ACS Chem Biol 12, 2767-2778, doi:10.1021/acschembio.7b00704 (2017).
|