帳號:guest(13.59.58.209)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃宣霈
作者(外文):Huang, Hsuan-Pei
論文名稱(中文):果蠅空間方向感的神經網路與馬可夫鏈行為模型
論文名稱(外文):A coupled neural circuit and Markov process model of spatial orientation in Drosophila melanogaster
指導教授(中文):羅中泉
指導教授(外文):Lo, Chung-Chuan
口試委員(中文):林秀豪
桑自剛
口試委員(外文):Lin, Hsiu-Hau
Sang, Tzu-Kang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:系統神經科學研究所
學號:107080511
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:37
中文關鍵詞:中央複合體空間方向記憶神經網路模型環形吸引子昆蟲導航
外文關鍵詞:central complexspatial orientation memoryneural circuit modelring attractorinsect navigation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:93
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為了在複雜環境中導航,動物需要具備空間方向感。許多研究表明,果蠅橢圓體(ellipsoid body, EB)腦區上的神經活性反映出活躍區(activity bump),形成一個頭向系統。但是,活躍區如何維持穩定和持續更新角度,其中的機制尚不明瞭,為了探討此問題,我構建出一個馬可夫鏈行為模型,結合先前已建立之前橋腦(protocerebral bridge, PB)-橢圓體神經網路模型,並根據近來釋出的電子顯微鏡果蠅神經體資料進一步調整架構和參數,再以此進行模擬來解釋基於布利丹效應之空間方向記憶行為實驗結果。實驗中,藉由基因調控或光遺傳學方式去抑制、活化兩種抑制性環形神經元:EIP環神經元、P環神經元,進而觀察二者對於空間方向記憶的影響。最終,前橋腦-橢圓體神經網路模型推論:EIP環神經元是維持活躍區形狀的關鍵因素,而P環神經元則負責控制果蠅身體旋轉時活躍區相應的更新。
To navigate in a complex environment, an animal needs to keep track of its orientation. Many studies revealed that a bump of activity in the Drosophila ellipsoid body (EB) represented head-direction. However, how the activity bump maintains stability while constantly updates its representation is not completed understood. To address this issue, I constructed a Markov-chain behavior model and combined it with a previously developed neural circuit model of protocerebral bridge (PB) and EB. I modified the neural circuit model based on the latest electron microscopy data and performed parameter tuning. The model was used to elucidate the results of behavioral experiments based on a modified Buridan’s paradigm. In the experiments, roles of specific neurons in orientation working memory were observed by silencing or optogenetically activating two types of inhibitory ring neurons: EIP-ring neurons and P-ring neurons. The model suggested that the EIP-ring neurons are crucial for maintaining the shape of the activity bump in EB, while the P-ring neurons are responsible for controlling the updating process for the bump location when a fly rotates its body.
一、 簡介 …………………………………………………………………………………… 1

二、 方法 …………………………………………………………………………………… 5
(一)、 PB-EB神經網路模型 ………………………… 5
(二)、 神經元及突觸模型 ………………………… 10
(三)、 行為實驗與馬可夫鏈行為模型 ………………………… 12
(四)、 環形神經元調控與其他模型參數 ………………………… 16
(五)、 取得電子顯微鏡果蠅大腦資料 ………………………… 16

三、 結果 …………………………………………………………………………………… 17
(一)、 模擬野生型果蠅之行為 ………… 17
(二)、 模擬EIP環、P環神經元抑制 ………… 20
(三)、 模擬EIP環、P環神經元於刺激階段活化 ………… 22
(四)、 模擬EIP環、P環神經元於後刺激階段活化 ………… 25
(五)、 以電子顯微鏡資料修正PB-EB模型 ………… 26

四、 討論 …………………………………………………………………………………… 29

五、 參考文獻 …………………………………………………………………………… 32

六、 附錄 …………………………………………………………………………………… 35
1. Strauss, R. The central complex and the genetic dissection of locomotor behaviour. Curr. Opin. Neurobiol. 12, 633–638 (2002).
2. Lebestky, T. et al. Two Different Forms of Arousal in Drosophila Are Oppositely Regulated by the Dopamine D1 Receptor Ortholog DopR via Distinct Neural Circuits. Neuron 64, 522–536 (2009).
3. Pfeiffer, K. & Homberg, U. Organization and Functional Roles of the Central Complex in the Insect Brain. Annu. Rev. Entomol. 59, 165–184 (2014).
4. Turner-Evans, D. B. & Jayaraman, V. The insect central complex. Curr. Biol. 26, R453–R457 (2016).
5. Seelig, J. D. & Jayaraman, V. Neural dynamics for landmark orientation and angular path integration. Nature 521, 186–191 (2015).
6. Green, J. et al. A neural circuit architecture for angular integration in Drosophila. Nature 546, 101–106 (2017).
7. Turner-Evans, D. et al. Angular velocity integration in a fly heading circuit. Elife 6, 1–39 (2017).
8. Taube, J. S., Muller, R. U. & Ranck, J. B. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10, 420–435 (1990).
9. Taube, J. S. The Head Direction Signal: Origins and Sensory-Motor Integration. Annu. Rev. Neurosci. 30, 181–207 (2007).
10. Ben-Yishai, R., Lev Bar-Or, R. & Sompolinsky, H. Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. U. S. A. 92, 3844–3848 (1995).
11. Skaggs, W. E., Knierim, J. J., Kudrimoti, H. S. & McNaughton, B. L. A model of the neural basis of the rat’s sense of direction. Adv. Neural Inf. Process. Syst. 7, 173–180 (1995).
12. Zhang, K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: A theory. J. Neurosci. 16, 2112–2126 (1996).
13. Xie, X., Hahnloser, R. H. R. & Seung, H. S. Double-ring network model of the head-direction system. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 66, 9 (2002).
14. Kim, S. S., Rouault, H., Druckmann, S. & Jayaraman, V. Ring attractor dynamics in the Drosophila central brain. Science 356, 849–853 (2017).
15. Cope, A. J., Sabo, C., Vasilaki, E., Barron, A. B. & Marshall, J. A. R. A computational model of the integration of landmarks and motion in the insect central complex. PLoS One 12, e0172325 (2017).
16. Fiore, V. G., Kottler, B., Gu, X. & Hirth, F. In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation. Front. Behav. Neurosci. 11, (2017).
17. Givon, L. E., Lazar, A. A. & Yeh, C.-H. Generating Executable Models of the Drosophila Central Complex. Front. Behav. Neurosci. 11, 102 (2017).
18. Kakaria, K. S. & de Bivort, B. L. Ring Attractor Dynamics Emerge from a Spiking Model of the Entire Protocerebral Bridge. Front. Behav. Neurosci. 11, 8 (2017).
19. Stone, T. et al. An Anatomically Constrained Model for Path Integration in the Bee Brain. Curr. Biol. 27, 3069-3085.e11 (2017).
20. Su, T. S., Lee, W. J., Huang, Y. C., Wang, C. Te & Lo, C. C. Coupled symmetric and asymmetric circuits underlying spatial orientation in fruit flies. Nat. Commun. 8, 139 (2017).
21. Lin, C. Y. et al. A Comprehensive Wiring Diagram of the Protocerebral Bridge for Visual Information Processing in the Drosophila Brain. Cell Rep. 3, 1739–1753 (2013).
22. Wolff, T., Iyer, N. A. & Rubin, G. M. Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits. J. Comp. Neurol. 523, 997–1037 (2015).
23. Strauss, R. & Pichler, J. Persistence of orientation toward a temporarily invisible landmark in Drosophila melanogaster. J. Comp. Physiol. - A Sensory, Neural, Behav. Physiol. 182, 411–423 (1998).
24. Yen, H. H., Han, R. & Lo, C. C. Quantification of Visual Fixation Behavior and Spatial Orientation Memory in Drosophila melanogaster. Front. Behav. Neurosci. 13, (2019).
25. Han, R. et al. Coordination between stabilizing circuits and updating circuits in spatial orientation working memory. bioRxiv 1–55 (2019).
26. Xu, C. S. et al. A Connectome of the Adult Drosophila Central Brain. bioRxiv 2020.01.21.911859 (2020).
27. Omoto, J. J. et al. Neuronal constituents and putative interactions within the drosophila ellipsoid body neuropil. Front. Neural Circuits 12, 394833 (2018).
28. Huang, Y.-C. et al. A Single-Cell Level and Connectome-Derived Computational Model of the Drosophila Brain. Front. Neuroinform. 12, 99 (2019).
29. Wolff, T. & Rubin, G. M. Neuroarchitecture of the Drosophila central complex: A catalog of nodulus and asymmetrical body neurons and a revision of the protocerebral bridge catalog. J. Comp. Neurol. 526, 2585–2611 (2018).
30. Weir, P. T. & Dickinson, M. H. Functional divisions for visual processing in the central brain of flying Drosophila. Proc. Natl. Acad. Sci. U. S. A. 112, E5523-32 (2015).
31. Shiozaki, H. M., Ohta, K. & Kazama, H. A Multi-regional Network Encoding Heading and Steering Maneuvers in Drosophila. Neuron 0, (2020).
32. Franconville, R., Beron, C. & Jayaraman, V. Building a functional connectome of the drosophila central complex. Elife 7, (2018).
33. Omoto, J. J. et al. Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations. Curr. Biol. 27, 1098–1110 (2017).
34. Shiozaki, H. M. & Kazama, H. Parallel encoding of recent visual experience and self-motion during navigation in Drosophila. Nat. Neurosci. 20, (2017).
35. Sun, Y. et al. Neural signatures of dynamic stimulus selection in Drosophila. Nat. Neurosci. 20, 1104–1113 (2017).
36. Fisher, Y. E., Lu, J., D’Alessandro, I. & Wilson, R. I. Sensorimotor experience remaps visual input to a heading-direction network. Nature (2019).
37. Kim, S. S., Hermundstad, A. M., Romani, S., Abbott, L. F. & Jayaraman, V. Generation of stable heading representations in diverse visual scenes. Nature (2019).
38. Namiki, S. & Kanzaki, R. Comparative neuroanatomy of the lateral accessory lobe in the insect brain. Frontiers in Physiology vol. 7 244 (2016).
39. Namiki, S., Wada, S. & Kanzaki, R. Descending neurons from the lateral accessory lobe and posterior slope in the brain of the silkmoth Bombyx mori. Sci. Rep. 8, (2018).
40. Mittelstaedt, M. L. & Mittelstaedt, H. Homing by path integration in a mammal. Naturwissenschaften 67, 566–567 (1980).
41. Heinze, S., Narendra, A. & Cheung, A. Principles of Insect Path Integration. Curr. Biol. 28, R1043–R1058 (2018).
42. Collett, M. & Collett, T. S. How do insects use path integration for their navigation? Biol. Cybern. 83, 245–259 (2000).
43. Wehner, R. & Srinivasan, M. V. Path integration in insects. in The Neurobiology of Spatial Behaviour 9–30 (Oxford University Press, 2003).
44. Kim, I. S. & Dickinson, M. H. Idiothetic Path Integration in the Fruit Fly Drosophila melanogaster. Curr. Biol. 27, 2227-2238.e3 (2017).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *