帳號:guest(18.191.34.169)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇 妍
作者(外文):Hsu, Lei-Wai
論文名稱(中文):白胺酸胺肽酶 (PA2939)作為一種可增強綠膿桿菌B136-33與 PAO1的細胞毒性、黏附和侵入能力的毒性因子
論文名稱(外文):Leucine Aminopeptidase (PA2939) as a Virulence Factor Enhancing Cytotoxicity, Adhesion and Invasion of Pseudomonas aeruginosa B136-33 and PAO1
指導教授(中文):張晃猷
指導教授(外文):Chang, Hwan-You
口試委員(中文):張壯榮
高茂傑
口試委員(外文):Chuang, Rung-Chang
Kao, Mao-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:107080423
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:82
中文關鍵詞:強綠膿桿菌白胺酸胺肽酶的細胞毒性
外文關鍵詞:Pseudomonas aeruginosaP. aeruginosaLeucine aminopeptidasePaAP
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
綠膿桿菌是臨床環境中常見的病原體之一。該病原體引起尿路,呼吸道,傷口,眼睛和系統性感染,並與多種抗生素之抗藥性相關,使治療複雜化。在對高細胞毒性、社區感染型、腹瀉型綠膿桿菌菌株的毒力進行分析時,我們注意到胺肽酶PaAP對培養的大腸直腸癌細胞表現出明顯的毒性。該酶是存在綠膿桿菌外膜囊泡中M28金屬肽酶家族的一員。到目前為止,尚未有PaAP與細胞毒性相關的報導。在這項研究中,我們探討細胞毒性B136-33菌株和標準菌株PAO1的上清液對大腸癌細胞的細胞毒性作用與其PaAP表現量的關聯。PaAP水平的升高與B13633菌株中綠膿桿菌細胞毒性的增加直接相關,而綠膿桿菌PAO1菌株的細胞毒性沒有觀察到差異。此外,為了近一步了解PaAP在細胞毒性作用的角色與貢獻,藉由大腸桿菌蛋白質表現系統建構重組PaAP蛋白,在純化後並用於測試其對哺乳動物細胞的影響。本論文發現單獨的重組PaAP不能誘導細胞死亡,也不能抑制細胞增殖。基於綠膿桿菌PAO1和純化的重組PaAP的細胞毒性測試結果均暗示PaAP非直接的細胞毒素。然而,當使用重組PaAP蛋白對細胞預先處理,發現在B13633和PAO1菌株下,綠膿桿菌的侵入與黏附的能力與PaAP的表現量成正相關,且綠膿菌素的量也與PaAP的表現量成正比。此外,發現綠膿桿菌的溶血、游動和表面移行(swarming)的能力隨著PaAP表現量的增加而增強。綜上所說,本論文發現PaAP不僅在細胞毒性中占有重要角色,也可提升綠膿桿菌的粘附性和侵入能力,甚至影響其他的毒力因子以及致病機制。
Pseudomonas aeruginosa is one of the most commonly encountered pathogens in clinical settings. The pathogen causes urinary tract, respiratory tract, wound, eye, and systematic infections and is frequently associated with multiple antibiotic resistance that complicates the treatment. During the analysis of the virulence of a highly cytotoxic, community-acquired, diarrheagenic P. aeruginosa strain, we noted that a mutant strain defective in aminopeptidase PaAP (PA2939) displayed a clear reduction in toxicity to cultured colorectal cancer cells. The enzyme is a metallo-enzyme of the M28 peptidase family that is present abundantly in the extracellular outer membrane vesicles of P. aeruginosa. So far, no report has associated PaAP with cytotoxicity. In this study, I investigated the cytotoxic effect of the culture supernatants of several derivatives of P. aeruginosa cytotoxic B136-33 and PAO1 on colorectal cancer cells in relation to their PaAP levels. The increased level of PaAP was directly related to the increased cytotoxicity of P. aeruginosa in B136-33 strain whereas little difference was observed in PAO1 strain. Further analysis using different truncated forms of PaAP produced in E. coli showed that PaAP alone could neither induce cell death nor inhibit cell proliferation. Nevertheless, the invasiveness and adhesion ability of P. aeruginosa were significantly enhanced by overexpression of PaAP in both B136-33 and PAO1. This finding was further supported by the fact that treating cultured cells with recombinant PaAP protein could significantly promote the bacterial invasion. Furthermore, higher PaAP expression seems to be proportional to higher pyocyanin production. Similarly, the hemolytic, swimming and swarming abilities of P. aeruginosa were found to be enhanced by the increased PaAP levels. In conclusion, we reported that PaAP plays an important role not only in cytotoxicity, adhesion and invasion ability of P. aeruginosa, but also influences other virulence factors and virulence associated mechanisms.
摘要 2
ABSTRACT 3
Table of Content 4
List of Tables 7
List of Figures 8
Abbreviations 10
1.1 Pseudomonas aeruginosa Prevalence 12
1.2 P. aeruginosa: Establishing and Maintaining an Infection 13
1.3 Proteases and their contribution in virulence 13
1.4 Introduction to Aminopeptidase (PaAP) 15
Materials and methods 17
1.5 Bacterial cultures and growth condition 17
1.5.1 Bacterial cultures preparation 17
1.5.2 Competent cell preparation 17
1.6 Cell culture and growth conditions 18
1.6.1 Medium preparation 18
1.6.2 Culture conditions 18
1.7 Overexpression of PaAP in P. aeruginosa 19
1.7.1 Construction of pMMB66EH-PaAP 19
1.8 Construction of recombinant PaAP variants 20
1.8.1 Construction of rPaAP 20
1.8.2 Construction of rPaAP_273-536 20
1.8.3 Construction of rPaAP_37-517 21
1.8.4 Genomic DNA extraction and purification 22
1.8.5 Primers 22
1.8.6 Polymerase Chain Reaction (PCR) 22
1.8.7 DNA purification 23
1.8.8 Isolation of plasmids 23
1.9 Purification of His-tagged rPaAP, rPaAP_273-536 and rPaAP_37-517 24
1.9.1 Solubilization of inclusion bodies 24
1.9.2 Refolding of rPaAP proteins 24
1.9.3 Purification of His-tagged protein 25
1.9.4 Activation of recombinant rPaAP 25
2.0 Enzyme activity assay 25
2.1 Cytotoxicity assay 26
2.2 Cell viability assay 26
2.3 Cell invasion assay and adherence assay 26
2.3.1 Preparation of bacteria 26
2.3.2 Preparation of cell culture 27
2.3.3 Cell invasion assay 27
2.3.4 Cell adherence assay 27
2.5 Cell proliferation inhibition assay 28
2.6 Hemolysis test 28
2.7 Swimming and swarming motility assay 28
2.8 Pyocyanin quantitation assay 29
2.9 SDS-PAGE and immunoblotting analysis 29
Results 31
3.0 Construction of a P. aeruginosa △PaAP mutant, complementation strains and recombinant PaAP 31
3.1 Recombinant PaAPs enzymatic activity and activation of rPaAP 32
3.2 Recombinant PaAP size conversion from 56 kDa to 28 kDa upon heating 33
3.3 Increased cytotoxicity of P. aeruginosa against mammalian cells is observed in overexpression PaAP strains 34
3.4 rPaAP does not have the same cytotoxicity on HCT8 cells 34
3.5 rPaAP does not inhibit HCT8 cell proliferation 35
3.6 Effects of PaAP expression on cell adhesion and cell invasion ability of P. aeruginosa 35
3.7 rPaAP_37-517 promotes P. aeruginosa adhesion and invasion of PaAP producing cells 36
3.8 Overexpression of PaAP showed increasing hemolytic activity 37
3.9 Influence of overexpression PaAP on pyocyanin production 38
3.10 Effects of PaAP overexpression in swarming and swimming ability of P. aeruginosa 38
Discussion 39
Tables 43
Figures 46


References

1. Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev. 2002;15(2):194-222.
2. Murphy TF. Pseudomonas aeruginosa in adults with chronic obstructive pulmonary disease. Curr Opin Pulm Med. 2009;15(2):138-42.
3. Antibiotic Resistance Threats in United States: Centers for Disease Control and Prevention (CDC); 2013. Available from: https://www.cdc.gov/drugresistance/Threat-Report-2013/pdf/ar-Threats-2013-508.pdf
4. Bleves S VV, Salacha R, Michel GP, Filloux A, Voulhoux R. Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons. Int J Med Microbiol. 2010;300(8):534-43.
5. Von Tils D, Blädel I, Schmidt M, Heusipp G. Type II secretion in Yersinia—a secretion system for pathogenicity and environmental fitness. Front Cell Infect Microbiol. 2012;2:160.
6. Cianciotto NP. Type II Secretion and Legionella Virulence. In: Hilbi H, editor. Molecular mechanisms in Legionella pathogenesis. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 81-102.
7. Sandkvist M. Type II secretion and pathogenesis. Infect Immun. 2001;69(6):3523-35.
8. Johnson TL, Fong JC, Rule C, Rogers A, Yildiz FH, Sandkvist M. The type II secretion system delivers matrix proteins for biofilm formation by Vibrio cholerae. J Bacteriol. 2014;196(24):4245-52.
9. Iglewski BH, Liu PV, Kabat D. Mechanism of action of Pseudomonas aeruginosa exotoxin adenosine diphosphate-ribosylation of mammalian elongation factor 2 in vitro and in vivo. Infect Immun. 1977;15(1):138-44.
10. Bielecki P, Glik J, Kawecki M, Martins dos Santos VA. Towards understanding Pseudomonas aeruginosa burn wound infections by profiling gene expression. Biotechnol Lett. 2008;30(5):777-90.
11. Kessler E, Safrin M. Elastinolytic and proteolytic enzymes. Methods Mol Biol. 2014;1149:135-69.
12. McCarty SM, Cochrane CA, Clegg PD, Percival SL. The role of endogenous and exogenous enzymes in chronic wounds: A focus on the implications of aberrant levels of both host and bacterial proteases in wound healing. Wound Repair Regen. 2012;20(2):125-36.
13. Gellatly SL, Hancock RE. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis. 2013;67(3):159-73.
14. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406(6799):959-64.
15. Yang J, Zhao HL, Ran LY, Li CY, Zhang XY, Su HN, et al. Mechanistic insights into elastin degradation by pseudolysin, the major virulence factor of the opportunistic pathogen Pseudomonas aeruginosa. Sci Rep. 2015;5:9936.
16. Kida Y, Higashimoto Y, Inoue H, Shimizu T, Kuwano K. A novel secreted protease from Pseudomonas aeruginosa activates NF-kappaB through protease-activated receptors. Cell Microbiol. 2008;10(7):1491-504.
17. Tan M-W, Rahme LG, Sternberg JA, Tompkins RG, Ausubel FM. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Pro Natl Acad Sci. 1999;96(5):2408-13.
18. Tang HB, DiMango E, Bryan R, Gambello M, Iglewski BH, Goldberg JB, et al. Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect Immun. 1996;64(1):37-43.
19. Ballok AE, O'Toole GA. Pouring salt on a wound: Pseudomonas aeruginosa virulence factors alter Na+ and Cl- flux in the lung. J Bacteriol. 2013;195(18):4013-9.
20. Hong Y, Ghebrehiwet B. Effect of Pseudomonas aeruginosa elastase and alkaline protease on serum complement and isolated components C1q and C3. Clin Immunol Immunopathol. 1992;62(2):133-8.
21. Laarman AJ, Bardoel BW, Ruyken M, Fernie J, Milder FJ, van Strijp JA, et al. Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways. J Immunol. 2012;188(1):386-93.
22. Li X-H, Lee J-H. Quorum sensing-dependent post-secretional activation of extracellular proteases in Pseudomonas aeruginosa. J Biol Chem. 2019.
23. Tsai CW. Role of secreted protease in virulence and proteolytic processing of secretome in P.aeruginosa B13633 [master's thesis]. National Tsing Hua University
2017.
24. Cahan R, Axelrad I, Safrin M, Ohman DE, Kessler E. A secreted aminopeptidase of Pseudomonas aeruginosa. Identification, primary structure, and relationship to other aminopeptidases. J Biol Chem. 2001;276(47):43645-52.
25. Schuster M, Hawkins AC, Harwood CS, Greenberg EP. The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol. 2004;51(4):973-85.
26. Schuster M, Lostroh CP, Ogi T, Greenberg EP. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol. 2003;185(7):2066-79.
27. Sarnovsky R, Rea J, Makowski M, Hertle R, Kelly C, Antignani A, et al. Proteolytic cleavage of a C-terminal prosequence, leading to autoprocessing at the N Terminus, activates leucine aminopeptidase from Pseudomonas aeruginosa. J Biol Chem. 2009;284(15):10243-53.
28. Bauman SJ, Kuehn MJ. Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect. 2006;8(9-10):2400-8.
29. Esoda CN, Kuehn MJ. Pseudomonas aeruginosa leucine aminopeptidase influences early biofilm composition and structure via vesicle-associated antibiofilm activity. mBio. 2019;10(6).
30. Zhao T, Zhang Y, Wu H, Wang D, Chen Y, Zhu MJ, et al. Extracellular aminopeptidase modulates biofilm development of Pseudomonas aeruginosa by affecting matrix exopolysaccharide and bacterial cell death. Environ Microbiol Rep. 2018;10(5):583-93.
31. Robinson T, Smith P, Alberts ER, Colussi-Pelaez M, Schuster M. Cooperation and cheating through a secreted aminopeptidase in the Pseudomonas aeruginosa RpoS response. mBio. 2020;11(2).
32. Kurachi M. Studies on the Biosynthesis of Pyocyanine. (II) : Isolation and determination of pyocyanine. Bulletin of the Institute for Chemical Research, Kyoto University. 1958;36:174-87.
33. Evans DJ, Frank DW, Finck-Barbançon V, Wu C, Fleiszig SMJ. Pseudomonas aeruginosa invasion and cytotoxicity are independent events, both of which involve protein tyrosine kinase activity. Infect Immun. 1998;66(4):1453-9.
34. Mandell GL D, Bennett JE, eds. Principles and practices of infectious diseases. New York: Churchhill Livingstone. 1990;3rd edition ( Pollack M. Pseudomonas aeruginosa).
35. Fleiszig SM, Zaidi TS, Fletcher EL, Preston MJ, Pier GB. Pseudomonas aeruginosa invades corneal epithelial cells during experimental infection. Infect Immun. 1994;62(8):3485-93.
36. Fleiszig S, Zaidi T, Pier G. Pseudomonas aeruginosa survival and multiplication within corneal epithelial cells in vitro. Infect Immun. 1995;63:4072-7.
37. Fleiszig SM, Zaidi TS, Preston MJ, Grout M, Evans DJ, Pier GB. Relationship between cytotoxicity and corneal epithelial cell invasion by clinical isolates of Pseudomonas aeruginosa. Infect Immun. 1996;64(6):2288-94.
38. Smith KM, Bu Y, Suga H. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem Biol. 2003;10(1):81-9.
39. Lau GW, Hassett DJ, Ran H, Kong F. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med. 2004;10(12):599-606.
40. Lau GW, Ran H, Kong F, Hassett DJ, Mavrodi D. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun. 2004;72(7):4275-8.
41. O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol. 1998;30(2):295-304.
42. O'Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol. 1998;28(3):449-61.
43. Fleiszig SM, Wiener-Kronish JP, Miyazaki H, Vallas V, Mostov KE, Kanada D, et al. Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. Infect Immun. 1997;65(2):579-86.
44. Finck-Barbançon V, Goranson J, Zhu L, Sawa T, Wiener-Kronish JP, Fleiszig SMJ, et al. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol. 1997;25(3):547-57.
45. Rabin SD, Hauser AR. Pseudomonas aeruginosa ExoU, a toxin transported by the type III secretion system, kills Saccharomyces cerevisiae. Infect Immun. 2003;71(7):4144-50.
46. Pankhaniya RR, Tamura M, Allmond LR, Moriyama K, Ajayi T, Wiener-Kronish JP, et al. Pseudomonas aeruginosa causes acute lung injury via the catalytic activity of the patatin-like phospholipase domain of ExoU. Crit Care Med. 2004;32(11):2293-9.
47. Diaz MH, Hauser AR. Pseudomonas aeruginosa cytotoxin ExoU is injected into phagocytic cells during acute pneumonia. Infect Immun. 2010;78(4):1447-56.
48. Majorek KA, Kuhn ML, Chruszcz M, Anderson WF, Minor W. Double trouble-buffer selection and his-tag presence may be responsible for nonreproducibility of biomedical experiments. Protein Sci. 2014;23(10):1359-68.
49. Panek A, Pietrow O, Filipkowski P, Synowiecki J. Effects of the polyhistidine tag on kinetics and other properties of trehalose synthase from Deinococcus geothermalis. Acta Biochim Pol. 2013;60(2):163-6.
50. Araújo AP, Oliva G, Henrique-Silva F, Garratt RC, Cáceres O, Beltramini LM. Influence of the histidine tail on the structure and activity of recombinant chlorocatechol 1,2-dioxygenase. Biochem Biophys Res Commun. 2000;272(2):480-4.
51. Twining SS, Kirschner SE, Mahnke LA, Frank DW. Effect of Pseudomonas aeruginosa elastase, alkaline protease, and exotoxin A on corneal proteinases and proteins. Invest Ophthalmol Vis Sci. 1993;34(9):2699-712.
52. Li Y, Bai F, Xia H, Zhuang L, Xu H, Jin Y, et al. A novel regulator PA5022 (aefA) is involved in swimming motility, biofilm formation and elastase activity of Pseudomonas aeruginosa. Microbiol Res. 2015;176:14-20.
53. Arora SK, Neely AN, Blair B, Lory S, Ramphal R. Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infections. Infect Iimmun. 2005;73(7):4395-8.
54. Adams H, Horrevoets WM, Adema SM, Carr HEV, van Woerden RE, Koster M, et al. Inhibition of biofilm formation by Camelid single-domain antibodies against the flagellum of Pseudomonas aeruginosa. J Biotechnol. 2014;191:131-8.
55. Kerchove AJd, Elimelech M. Bacterial swimming motility enhances cell deposition and surface coverage. Environ Sci Technol. 2008;42(12):4371-7.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用新式三維細胞培養系統研究癌症與組織工程中異種細胞間交互作用
2. 治療性anti-IgE單株抗體藥物在體外重組模式及體內基因轉殖鼠之藥理作用機制
3. 建構並鑑定創傷弧菌調控子LytR的突變株
4. 創傷弧菌YJ016中調控環狀雙鳥嘌呤單磷酸相關的 vva0325-36基因群功能分析
5. DTriP-22抑制腸病毒71型之機制探討
6. 細菌基因表現之調控: HptB磷酸根轉移系統與三磷酸腺苷水解功能必須之轉錄蛋白AcoK之功能分析
7. 比較分析綠膿桿菌兩個尿嘧啶雙磷酸葡萄糖去氫酶
8. 標的表現IgE的B淋巴細胞以調控IgE之生成
9. 克雷白氏肺炎桿菌第三型線毛主要單體蛋白MrkA—線毛組裝有關區域之搜尋以及於呈現系統發展之應用
10. 綠膿桿菌HptB訊息傳遞路徑-雜合感應子之分析及下游基因之搜尋
11. 克雷白氏肺炎桿菌磷酸酪胺酸激酶KpWzc對其下游酵素ManC, Gnd活性影響之分析與Ugd磷酸酪胺酸殘基鑑定與下游受質之搜尋
12. 克雷白氏肺炎桿菌第三型線毛主要單元體MrkA─參與線毛堆疊之重要胺基酸分析以及線毛的疫苗呈現系統之建構
13. Histidine-containing Phosphotransfer Protein-B (HptB) Regulates Swarming Motility through Partner-switching System in Pseudomonas aeruginosa PAO1 strain
14. 利用磁性粒子與光敏性水膠建構特殊細胞排列的組織
15. 創傷弧菌外毒素RtxA 高量甘氨酸-天門冬氨酸區域人源單鏈抗體之篩選以及此區域的細胞表面結合特性之研究
 
* *