|
1.Jesus, T. S., Landry, M. D., & Hoenig, H. (2019). Global need for physical rehabilitation: systematic analysis from the Global Burden of Disease Study 2017. International Journal of Environmental Research and Public Health, 16(6), 980-999. 2.Kan, H. J., Kharrazi, H., Chang, H.-Y., Bodycombe, D., Lemke, K., & Weiner, J. P. (2019). Exploring the use of machine learning for risk adjustment: A comparison of standard and penalized linear regression models in predicting health care costs in older adults. PLoS One, 14(3), e0213258. 3.Relles, D., Ridgeway, G., & Carter, G. (2002). Data mining and the implementation of a prospective payment system for inpatient rehabilitation. Health Services and Outcomes Research Methodology, 3(3-4), 247-266. 4.Rose, S. (2016). A machine learning framework for plan payment risk adjustment. Health Services Research, 51(6), 2358-2374. 5.Rose, S. (2018). Robust machine learning variable importance analyses of medical conditions for health care spending. Health Services Research, 53(5), 3836-3854. 6.Shrestha, A., Bergquist, S., Montz, E., & Rose, S. (2018). Mental health risk adjustment with clinical categories and machine learning. Health Services Research, 53, 3189-3206. 7.Yan J, Linn K.A., Powers B.W., et al. (2019). Applying machine learning algorithms to segment high-cost patient populations. Journal of General Internal Medicine, 34(2), 211-217. 8.李玉春, 黃昱瞳, 黃光華, 葉玲玲, 與陳珮青 (2014),「全民健保支付制度改革之回顧與展望」《台灣醫學》,18(1),53-66。 9.周歆凱, 蘇喜, 黃興進, 蔡明足, 與翁林仲 (2006),「 運用決策樹技術探討急診病患醫療費用之消耗」,《台灣公共衛生雜誌》,25(6),430-439。 10.謝如蘭, 連倚南, 謝霖芬等人 (1996),「國人接受復健醫療之疾病分類研究:以北部, 東部八家醫院為例」,《中華民國復健醫學會雜誌》,24(1),35-40。 11.蘇宗柏, 陳思遠, 王亭貴, 王顏和, 與連倚南 (2010),「復健醫療服務之疾病分類研究:國內某醫學中心近期經驗」,《台灣復健醫學雜誌》,38(4),229-236。
|