帳號:guest(3.148.107.34)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃美禎
作者(外文):Huang, Mei-Chen
論文名稱(中文):地理資訊系統及資料探勘技術在公共自行車設站之分析與研究 - 以臺北市公共自行車系統為例
論文名稱(外文):Analysis and research of GIS and data mining technology in the public bicycle establishment rental station - The case of Taipei City's public bicycle system
指導教授(中文):史欽泰
王俊程
指導教授(外文):Shih, Chin-Tay
Wang, Jyun-Cheng
口試委員(中文):羅達賢
李傳楷
口試委員(外文):Lo, Ta-Hsien
Lee, Chuan-Kai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:經營管理碩士在職專班
學號:107076520
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:98
中文關鍵詞:公共自行車系統開放資料機器學習LightGBM決策樹
外文關鍵詞:Public Bicycle SystemOpen DataMachine LearningLightGBM Decision Tree
相關次數:
  • 推薦推薦:0
  • 點閱點閱:68
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近幾年公共自行車租賃系統已逐漸盛行,自行車具有便利性、低成本、無汙染的優勢,深受短程接駁通勤族喜愛,相較其它交通工具而言,自行車則為綠色出行的代表,隨著臺北市因建成環境越趨成熟,公共建設的臨立,商業活動發展以及人口的移入,臺北市在土地取用更顯不足,臺北市公共自行車系統於2008年開始發展,截至2020年為止已在臺北市12個行政區陸續建置了400個站點,其會員有效卡片數量達12,740,136,騎乘次數達164,690,616,相當於每年可創造近千萬次騎乘,以2019年10月所統計臺北市有效人口數為264.6萬,也就是說居住於臺北市的居民,多數已有公共自行車騎乘體驗,根據臺北市2017年公共自行車使用特性大數據分析報告,臺北市公共自行車Youbike系統被定位為公共運具中「第一哩」及「最後一哩」低碳轉乘具運之一,車輛平均周轉率為8~10次,這些數據足以顯示公共自行車對於有高密度人口的都市具有顯著性的需求。
隨著城市基礎設施日益數字化,人類行為數據已無處不在。模式識別和機器學習(Machine Learning,簡稱ML)技術對於整理和分析大量現實世界的行為數據已日趨成熟,現行人工智能可透過對歷史資料的分析達到預測效果,其需求預測的相關應用也已落實在我們生活之中,如預估臺北市某個區域房價的漲跌,或是分析消費行為進行喜好推薦等,近年臺北市因商業性發展、公共建設興起以及外來人口移入造成通勤及居住增加,其城市樣貌已逐漸在改變,臺北市可運用於公共自行站點佈建之合適區域已朝向減少趨勢,如何在有限土地條件限制下,讓土地邊際效益最大化,持續增建公共自行車站點,對於現今租賃系統將會遭遇到困難,因此本研究期望能針對公共自行車設址問題,透過人工智能方式(科學選點)找出最適合設址的區域,讓公共自行車深入巷弄,貼近使用者需求。
在文獻回顧部份,分成自行車介紹及自行車文獻相關研究二個主題,本研究之目的在於了解地理環境特徵中那些特徵對公共自行車使用有其影響性,故在資料來源取用上,著重在開放資料及POI(Point of Interest)等特徵上,再結合地理網格方式採以GIS圖層分析,在研究方法方面,則採用機器學習方式,以LightGBM(Light Gradient Boosting Machine)決策樹模型對數百組資料集進行抽樣訓練及測試,以找出最佳化預測模型,本研究以臺北市Youbike(微笑單車)公共自行車做為研究目標,在使用量與特徵值關係檢定,採用斯皮爾曼等級相關係數,而模型效度方面則以R2(r-squared)決定係數及Shap value做為模型解釋之方法。
本研究採用預測方式找出每個地理網格各特徵表現,對於市政單位或營運商日後在佈建租賃站點可做為參考之用,讓資源可有效的配置在需要的區域上,也可讓站點建置成本予以降低,以達到都市永續發展之目的。
In recent years, the public bicycle rental system has gradually become popular. Bicycles have the advantages of convenience, low cost, and pollution-free. They are popular among commuters with short-distance connections. Compared with other modes of transportation, bicycles are a representative of green travel. Due to the maturity of the built environment in Taipei City, the immediate establishment of public construction, the development of commercial activities, and the migration of population, Taipei City’s land acquisition is even more insufficient. Taipei City’s public bicycle system began to develop in 2008 and has been completed by 2020. 400 stations have been built in 12 administrative districts of Taipei City. The number of valid cards for members reached 12,740,136 and the number of rides reached 164,690,616, which is equivalent to creating nearly 10 million rides per year. According to the statistics of Taipei City in October 2019, the effective population is 2.646 million, which means that most residents living in Taipei have already experienced public bicycle riding. According to the 2017 Taipei City Public Bicycle Use Characteristics Big Data Analysis Report, Taipei City Public Bicycle Youbike system is positioned as one of the "first mile" and "last mile" low-carbon transfers in the transportation equipment. The average vehicle turnover rate is 8-10 times per day. These data are sufficient to show that public bicycles are significant for cities with high-density populations demand.
As urban infrastructure becomes increasingly digitized, human behavior data also become ubiquitous. Pattern recognition and machine learning (ML) technologies have become increasingly mature for collating and analyzing large amounts of real-world behavior data. The currecent artificial intelligence can produce predictive results through the analysis of historical data, and its demand prediction related applications have also been implemented in our lives, such as predicting the rise and fall of housing prices in a certain area of Taipei City, or analyzing consumer behavior to recommend preferences, etc. In recent years, Taipei City has increased commuting and housing due to commercial development, the rise of public construction, and the immigration of foreign populations. The appearance of the city has gradually changed. The suitable areas in Taipei City that can be used for the deployment of public self-service stations are been decreasing. How to maximize the marginal benefits of the land under limited land conditions and continue to build public bicycle stations. This research hopes to address the problem of public bicycle location, through artificial intelligence (scientific point selection) to find the most suitable area for the location of rental site.
This study focused on open data and POI (Point of Interest) and other features, and then combined with geographical grid methods to extract GIS layer analysis, in the research method, We adopt machine learning method, LightGBM (Light Gradient Boosting Machine) . The Gradient Boosting Machine decision tree model sampled and tested hundreds of data sets to find optimized predictive models. This study used Youbike (Smile Bike) public bicycles in Taipei City as research objectives, and used Spearman's rank correlation coefficient to examine usage and characteristic values, and model validity was interpreted with R2 (r-squared) decision factor and Shap value.
This study uses model prediction to find out the characteristics of each geographic grid. It can be used as a reference for municipal units or operators in the construction of rental sites in the future, so that resources can be effectively allocated in the required areas. The cost of site construction can be reduced to achieve the goal of sustainable urban development.
論文摘要 1
ABSTRACT 3
誌謝 5
目錄 6
圖目錄 9
表目錄 10
第壹章 緒論 11
第一節 研究背景 11
第二節 研究動機 13
第三節 研究範圍 14
第四節 章節架構與流程 15
一、 章節架構 15
二、 研究架構 16
第五節 研究限制 17
第貳章 文獻回顧 18
第一節 公共自行車系統 18
一、 公共自行車系統發展歷史 18
二、 公共自行車系統組成 21
三、 公共自行車文獻相關研究 23
第二節 公共自行車與地理環境使用之相關研究 25
一、 公共自行車營運資料與應用 25
二、 公共自行車系統與地理環境使用關聯性 26
第三節 技術名詞解釋 28
一、 巨量資料 (Big Data) 28
二、 開放資料(Open Data) 30
三、 地理資訊(Geographic Informaiton System, GIS) 30
四、 資料探勘(Data mining) 37
第參章 研究方法 43
第一節 收集資料 44
一、 營運資料採集與整理 44
二、 地理環境特徵資料採集與整理 47
第二節 資料處理 52
一、 POI興趣點 52
二、 開放資料(Open Data) 53
第三節 資料合併 57
一、 人口特徵值分群轉換 57
二、 網格交集特徵計算 58
第四節 資料訓練 61
一、 訓練模型驗證 62
第肆章 研究結果與建議 66
第一節 特徵值與使用量相關性 66
一、 高度相關性特徵值 67
二、 中度及無相關性特徵值 70
第二節 模型效度驗證 71
一、 特徵值重要度解釋 71
二、 模型驗證解釋 77
三、 模型推薦適建網格區域 81
第伍章 結論與後續建議 83
第一節 結論 83
一、 環境特徵值對租借使用量之影響 84
二、 模型對預測效用 85
三、 預測與現實間的比對 85
第二節 後續研究 87
一、 研究改善 87
二、 其他領域應用 87
參考文獻 88
王少谷(2015)。公共自行車租用與都市土地使用型態關聯性之探討。國立成功大學。
王明志、曾正雄、陳冠廷 (2009)。地理空間資訊製圖與建模研究。中華民國地圖學會會刊,19,97-116。
白詩滎(2013)。臺北公共自行車使用行為特性分析與友善環境建構之研究。國立政治大學。
沙昱(2019)。城市公共自行車使用量與建成環境的關係分析。國立臺灣大學。
李錫堤、鄭錦桐、廖啟雯、林書毅(2003)。地理資訊系統導論,上課講義,取自http://gisclass.geo.ncu.edu.tw/91gisintro/class.pdf
李覺白(2017)。資料探勘,取自https://yourgene.pixnet.net/blog/post/118993558-簡介資料探勘
余書玫(2009)。公共自行車租借系統選擇行為之研究。國立交通大學。
施保旭(2000)。地理資訊系統。臺北市:儒林。
洪菁蓬(2012)。公共自行車租借系統之最佳租借站位址設置及車輛運補策略之研究。國立成功大學。
張勻威(2011)。自行車租賃佈署暨調度最佳之化之研究。國立中央大學。
黃冠瑜(2016)。臺北都會區主要商用不動產類型分布區位之空間型構分析。國立臺北大學。
趙家芸、王聖鐸 (2019)。以開放街圖與開放資料分析公共自行車使用率-以臺北市為例。航測及遙測學刊,24(4),245-255。
解鴻年、張馨文 (2011)。新竹科學城民眾使用公共自行車意願分析。Journal of architecture,12(3),237-263。
廖敏婷(2012)。考慮需求比例及暫時人力配置之公共自行車租借系統管理策略。國立成功大學。
蔡博文、吳怡、鍾明光 (2016)。自發性地理資訊品質評估探討-蝴蝶VGI案例分析。中國地理學會會刊,56,1-13。
劉宜青(2012)。以模擬最佳化求解公共自行車共享系統之初始車輛配置策略。國立成功大學。
謝昉叡(2011)自行車租賃系統佈署調度暨選址最佳化之研究。國立中央大學。
鍾智林、簡佑勳(2014)。公共自行車時空分析法之建構與營運策略改善-以臺北微笑自行車為例。都市交通半年刊,29(1),1-10。
Atkinson, R. P. D., Rhodes, C. J., Macdonald, D. W., & Anderson, R. M. (2002). Scale‐ free dynamics in the movement patterns of jackals. Oikos, 98(1), 134-140.
Borgnat, P., Abry, P., Flandrin, P., Robardet, C., Rouquier, J. B., & Fleury, E. (2011) Shared bicycles in a city: A signal processing and data analysis perspective. Advances in Complex Systems, 14(3): 415-438.
Buck, D., & Buehler, R. (2012). Bike lanes and other determinants of capital bikeshare trips. In: Paper presented at the 91st Transportation Research Board Annual Meeting 2012, Washington, DC.
Cervero, R., & Kockelman, K. (1997). Travel demand and the 3Ds: Density, diversity, and design. Transportation Research Part D: Transport and Environment, 2(3): 199-219.
Cervero, R., Sarmiento, O. L., Jacoby, E., Gomez, L. F., & Neiman, A. (2009). Influences of built environments on walking and cycling: Lessons from Bogotá. International Journal of Sustainable Transportation, 3(4): 203-226.
Faghih-Imani, A., Eluru, N., El-Geneidy, A. M., Rabbat, M., & Haq, U. (2014) How land-use and urban form impact bicycle flows: Evidence from the bicycle-sharing system (BIXI) in Montreal. Journal of Transport Geography, 41: 306-314.
Fan, H.C., Zipf, A., Fu, Q., and Neis, P., 2014. Quality assessment for building footprints data on OpenStreetMap, International Journal of Geographical Information Science, 28(4): 700- 719.
Froehlich, J., Neumann J., & Oliver N. (2009). Sensing and predicting the pulse of the city through shared bicycling. International Joint Conference on Artificial Intelligence. 9: 1420-1426.
Girres, J.F., and Touya, G., 2010. Quality assessment of the French OpenStreetMap dataset, Transactions in GIS, 14(4): 435-459.
Hägerstraand, T. (1970). What about people in regional science?. Papers in regional science, 24(1): 7-24.
Haklay, M., Basiouka, S., Antoniou, V., and Ather, A. 2010. How many volunteers does it take to map an area well? The validity of Linus' law to volunteered geographic information, Cartographic Journal, 47(4): 315-322.
Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47, 98-115.
Kazi Mostafa., John Y. Chiang., Wei Cheng Tsai., Innchyn Her. (2017). 應用於六角網格影像之模糊雜訊移除與邊緣偵測,中國機械工程學刊,38(6),659-667。
Lathia, N., Ahmed, S., & Capra, L. (2012). Measuring the impact of opening the London shared bicycle scheme to casual users.Transportation research part C: emerging technologies, 22: 88-102.
Middleton, L. and Sivaswamy, J., Hexagonal image processing: a practical approach, Springer- Verlag New York Inc. (2005).
O’Brien, O., Cheshire, J., & Batty, M. (2014). Mining bicycle sharing data for generating insights into sustainable transport systems. Journal of Transport Geography, 34: 262-273.
Ramos-Fernández, G., Mateos, J. L., Miramontes, O., Cocho, G., Larralde, H., & Ayala-Orozco, B. (2004). Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi). Behavioral Ecology and Sociobiology, 55(3): 223-230.
Rixey, R. (2013). Station-level forecasting of bikesharing ridership: Station network effects in three US systems. Transportation Research Record: Journal of the Transportation Research Board, 2387: 46-55.
Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Murphy, E. J., Prince, P. A., & Stanley, H. E. (1996). Lévy flight search patterns of wandering albatrosses. Nature, 381(6581): 413-415.
Vogel, P., Greiser, T., & Mattfeld, D. C. (2011). Understanding bike-sharing systems using data mining: Exploring activity patterns. Procedia-Social and Behavioral Sciences, 20: 514-523.
Wang, X., Lindsey, G., Schoner, J., Harrison, A. (2012). Modeling bike share station activity: the effects of nearby businesses and jobs on trips to and from stations. In: Paper Presented at the 92nd Transportation Research Board Annual Meeting 2012, Washington, DC.
Yang, T.H., Lin, J.R., Chang, Y.C. (2010), “Strategic design of public bicycle sharing systems incorporating with bicycle stocks considerations”, Computers and Industrial Engineering, CIE 40th International Conference, 1-6.
臺北市政府交通局(2015)。公共自行車租賃站設置準則。臺北 : 臺北市政府交通局。
都市交通半年刊(2014)。Urban Traffic Biannually。臺北市交通安全促進會,https://www.tsfts.org.tw。
臺中市公共自行車租賃系統建置規劃及營運管理案規劃案期末報告: https://www.traffic.taichung.gov.tw/
臺北市微笑單車,官方網站(2019) : http://www.youbike.com.tw
Velib’官方網站(2019),http://www.en.velib.paris.fr/
Bycyklen官方網站(2019),http://bycyklen.dk/en/the-bycykel/
OV-fiets 官方網站(2019),http://www.ov-fiets.nl/
【硬塞科技字典】什麼是資料探勘(2016),https://www.inside.com.tw/article/6755-what-is-data-mining
維基百科,https://zh.wikipedia.org
臺北市交通安全促進會,https://www.tsfts.org.tw
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *