帳號:guest(18.188.102.117)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱延庭
作者(外文):Chu, Yan-Ting
論文名稱(中文):探討產業演化的動力-以半導體產業與生物科技產業為例
論文名稱(外文):Investigating the Dynamics of Industry Evolution: Evidence from Semiconductors and Biotechnologies
指導教授(中文):洪世章
指導教授(外文):Hung, Shih-Chang
口試委員(中文):陳宗權
曾詠青
口試委員(外文):Chen, Tzong-Chyuan
Tseng, Yung-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:科技管理研究所
學號:107073521
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:49
中文關鍵詞:混沌理論半導體產業生物科技產業混合研究方法
外文關鍵詞:chaos theorysemiconductorbiotechnologymixed-method research
相關次數:
  • 推薦推薦:0
  • 點閱點閱:71
  • 評分評分:*****
  • 下載下載:27
  • 收藏收藏:0
本研究目的在從混沌理論的觀點探討產業演化的動力。混沌理論隱含著產業演化的
動力是非線性、對初始條件敏感的、路徑依賴和不可預測的。因此,本研究認為混沌理
論是正確理解產業動態的理論觀點。為了研究這個問題,在本文中將研究設計為一種混
合方法的研究方式,同時採用質化與量化研究產業演化的過程。我們選擇了五個數學量
數 (BDS、Hurst 指數、相關維度、李雅普諾夫指數、局部李雅普諾夫指數)來分析半導
體產業與生物科技產業的時間序列數據。而後,我們用質化的方式說明和解釋這五個數
學量詞的結果。最後,我們發現這兩個產業表現出不同程度的混亂,並且我們推斷半導
體產業更容易受到制度壓力,導致半導體產業的混沌程度高於生物科技產業。我們的研
究有助於自然科學方法在管理中的應用,我們也試圖對策略管理和創新過程產生一些啟
示。
This research aims to study the dynamics of industry evolution through the perspective of chaos theory. Chaos implies that the dynamics of industry evolution is featured by structural order out of disorder, sensitivity to the initial condition, path dependence, and unpredictability. Thus, we argue that chaos theory is a proper theoretical view to comprehend the dynamics of industry. In order to address this issue, we design our article herein as a mixed-method research, employing both quantitative and qualitative sequentially to study how industry evolves. Five mathematical quantifiers (i.e., BDS, Hurst exponent, correlation dimension, Lyapunov exponent, and local Lyapunov exponent) are chosen to analyze the time series data drawn from the semiconductor and biotechnology industry. Then, we qualitatively illustrate and interpret the results of the five quantifiers. In the end, we find these two industries demonstrate different degree of chaos, and we infer that the semiconductor industry is more subject to institutional pressure, leading to its low degree of the biotechnology. Our research contributes to the application of natural science’s approaches in management and we also try to give some implications to strategic management and innovation process.
1. INTRODUCTION 1
2. LITERATURE 3
2.1 Industrial Evolution 3
2.2 Chaos Theory and Management 5
3. RESEARCH DESIGN 8
3.1 Case Selection 8
3.2 Mathematical Approaches 9
3.2.1 BDS test 10
3.2.2 Hurst exponent 11
3.2.3 Correlation dimension 12
3.2.4 Lyapunov exponent 14
3.2.5 Local Lyapunov exponent 15
3.3 Data Collection 16
4. ANALYSIS 20
4.1 ARIMA-GARCH 20
4.2 Computations of Mathematical Approaches 24
4.2.1 BDS test 24
4.2.2 Hurst exponent 25
4.2.3 Correlation dimension 26
4.2.4 Lyapunov exponent 27
4.3 Case Study 31
4.3.1. Why does the semiconductor industry have higher long-term memory? 31
4.3.2. Why does the biotechnology industry have higher dimension chaos than that of semiconductor industry? 34
4.3.3. Why is the semiconductor conductor industry more sensitive to initial conditions? 36
4.3.4. Why can the semiconductor industry distinguish chaotic intervals, but the biotechnology industry cannot? 39
5. CONCLUSION AND DISCUSSION 43
5.1 Theoretical Implications 43
5.2 Practical Implications 44
5.3 Limitations and Future Study 45
REFERENCES 46

Axelrod, R., & M. D. Cohen. (2000). Harnessing Complexity. Basic Books.
Baumol, W. J., & Quandt, R. (1985). Chaos models and their implications for forecasting. Eastern Economic Journal, 11(1):3-15
Beckman, C., Haunschild, P.R., & Phillips, D.J. (2004). Friends or Strangers? Firm-Specific Uncertainty, Market Uncertainty, and Network Partner Selection. Organization Science, 15(3): 259-275.
Bouchikhi, H. (1993). A constructivist framework for understanding entrepreneurship performance. Organization studies, 14(4):549-570.
Brock, W. A. (1986). Distinguishing random and deterministic systems. Journal of Economic Theory, 40(1): 168-195.
Brock, W. A., Scheinkman, J.A., & Lebaron, B. (1996). A Test for Independence Based on the Correlation Dimension. Econometric Reviews, 15(3): 197-235.
Bryman, A. (2015). Social Research Methods. Oxford University Press.
Burgelman, R. A., & Grove, A. S. 2007. Let chaos reign, then rein in chaos- repeatedly: Managing strategic dynamics for corporate longevity. Strategic Management Journal, 28(10): 965-979.
Bygrave, W. D. (1989). The entrepreneurship paradigm(I): A philosophical look at its research methodologies. Entrepreneurship Theory and practice, 14(1):7-26.
Cheng, Y. T., & Van de Ven, A. H. (1996). Learning the innovation journey: order out of chaos?. Organization science, 7(6):593-614.
Chih-Min Yao. (2001). The Influence of Philadelphia Semiconductor Index and Micron Stock Price on Taiwan’s Electric Stock.
DE MEYER, A. C. L., Loch, C. H., & Pich, M. T. (2002). Managing project uncertainty: from variation to chaos. MIT Sloan Management Review, 43(2):60.
Diebold, F. X., & Kilian, L. (2001). Measuring predictability: theory and macroeconomic applications. Journal of Applied Econometrics, 16(6):657-669.
Dolan, S. L., Garcia, S., & Auerbach, A. (2003). Understanding and managing chaos in organisations. International journal of management, 20(1):23-35.
Douglas Kiel, L., & Elliott, E. (1997). Chaos theory in the social sciences. Foundations and Applications.
Drucker, P.F. (1969). The age of discontinuity; guidelines to our changing society. Heinemann.
Garud, R., Gehman, J., & Kumaraswamy, A. (2011). Complexity arrangements for sustained innovation: Lessons from 3M Corporation. Organization Studies, 32(6):737-767.
Grassberger, P., & Procaccia, I. (1983). Measuring the Strangeness of Strange Attractors. Physical D-Nonlinear Phenomena, 9(1-2): 189-208.
Grassberger, P., & Procaccia, I. (1983). Characterization of Strange Attractors. Physical Review Letter, 50(5): 346-349
Gregersen, H., & Sailer, L. (1993). Chaos theory and its implications for social science research. Human relations, 46(7), 777-802.
Hasselblatt, B., & Katok, A. (2003). A First Course in Dynamic: with a Panorama of Recent Development. Cambridge University Press.
Hay, M., Thomas, D. W., Craighead, J. L., Economides, C., & Rosenthal, J. (2014). Clinical development success rates for investigational drugs. Nature biotechnology, 32(1), 40-51.
Hirotugu Akaike. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6): 716-723
Hsieh, D. A. (1991). Chaos and nonlinear dynamics: application to financial markets. The Journal of Finance, 46(5): 1839-1877.
Hung, SC., & Tu, MF. (2011). Technological change as chaotic process. R&D Management, 41(4): 378-392
Hung, SC., & Tu, MF. (2014). Is small actually big? The chaos of technological change. Research Policy, 43(7):1227-1238.
Hurst, H. E. (1954). Long-term storage capacity of reservoirs. Transactions of The American Society of Civil Engineers, 116: 770-799.
Hurst, H. E. (1956). Methods of using long-term storage in reservoirs. ICE Proceedings, 5(5): 519-543.
John T. E. Richardson. (1984). Developing the theory of working memory. Memory & Cognition, 12(1):71-83.
James Gleick. (1987). Chaos: Making a New Science. Penguin Books.
Jay W. Forrester. (1961). Industrial Dynamics. M.I.T. Press.
Kellert, S. H. (1993). In the wake of chaos: Unpredictable order in dynamical systems. University of Chicago press.
K. Michael Mathews., Michael C. White., & Rebecca G. Long. The Problem of Prediction and Control in Theoretical Diversity and the Promise of the Complexity Sciences. Journal of Management Inquiry, 8(1):17-31.
Levy, D. 1994. Chaos theory and strategy: Theory, application, and managerial implications. Strategic Management Journal, 15(2): 167-178.
Li, T. Y., & Yorke, J. A. (1975). Period Three Implies Chaos. American Mathematical Monthly, 82: 985-992
Lo, A. W. (1991). Long-term memory in stock market prices. Econonmetria, 59(5): 1279-1313.
Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2): 130-141.
Mandelbrot, B. B. (1975). On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars. Journal of Fluid Mechanics, 72(2): 401-416.
McMillan, E., & Carlisle, Y. (2007). Strategy as order emerging from chaos: A public sector experience. Long Range Planning, 40 (6): 574-593.
Michael J. Radzicki. (1990). Methodologia oeconomiae et systematis dynamis. System Dynamics Review, 6(2):123-147
Musielak, D. E., Musielak, Z. E., & Kennamer, K. S. (2005). The onset of chaos in nonlinear dynamical systems determined with a new fractal technique. Fractals, 13 (1): 19-31.
Ndofor, HA., Fabian, F., & Michel, JG. (2018). Chaos in Industry Environments. IEEE Transactions on Engineering Management, 65(2): 191-203.
Niosi, J. (2011). Complexity and path dependence in biotechnology innovation systems. Industrial and Corporate Change, 20(6): 1795-1826.
Pascale, R. T. 1999. Surfing the edge of chaos. Sloan Management Review, 40 (3): 83-94.
Peterson, M. F., & Meckler, M. R. (2001). Cuban-American entrepreneurs: Chance, complexity and chaos. Organization Studies, 22(1):31-57.
Porter, M. E. (1980). Competitive Strategy: Techniques for Analyzing Industries and Competitors. New York: Free Press.
Prigogine, I., & Livingston, P. (1984). Order out of chaos Man's new dialogue with nature. Fontana Press.
Quinn, J. B. (1985). Innovation and corporate strategy: Managed chaos. Technology in Society, 7(2-3):263-279.
Ruelle, D., & Takens, F. (1971). On the nature of turbulence. Communications in Mathematical Physics. 20(3):167-192.
Ruelle, D. (1989). Chaotic evolution and strange attractors. Cambridge University Press.
Ruelle, D. (2006). What is a strange attractor. Notices of the AMS, 53(7):764-765.
Stacey, R. (1993). Strategy as order emerging from chaos. Long Range Planning, 26 (1): 10-17.
Stam, C. J. (2005). Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clinical Neurophysiology, 116(10): 2266-2301.
Stevenson, H., & Harmeling, S. (1990). Entrepreneurial management's need for a more “chaotic” theory. Journal of Business Venturing, 5(1), 1-14.
Strogatz, S. H. (1994). Nonlinear dynamics and chaos: with applications to Physics. Biology, Chemistry, and Engineering. Perseus Books.
Strogatz, S. H. (2003). Sync: How Order Emerges from Chaos in the Universe. Sync: How Order Emerges from Chaos In the Universe, Nature, and Daily Life, Hachette Books.
T. Lemola. (2002). Convergence of national science and technology policies: the case of Finland. Research Policy. 31(8-9)1481-1490
Thiétart, R. A., & Forgues, B. (1995). Chaos theory and organization. Organization Science, 6(1): 19-31.
Torbert, W. R. 1996. The “chaotic” action awareness of transformational leaders. International Journal of Public Administration, 19 (6): 911-939.
Van de Ven, A. H. (1986). Central problems in the management of innovation. Management science, 32(5):590-607.
W. Marzocchi., F. Mulargia., & G. Gonzato. (1997). Detecting low-dimensional chaos in geophysical time series. Journal of Geophysical Research, 102:3195-3209
Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985). Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 16 (3): 285-317.
Zeng, X., Eykholt, R., & Pielke, R.A. (1991). Estimating the Lyapunov-exponent spectrum from short time series of low precision. Physical Review Letters, 66(25):3229-3232.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *