|
Alla, S., & Adari, S. K. (2019). Beginning Anomaly Detection Using Python-Based Deep Learning. Springer. Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 1–22. Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv Preprint arXiv:1803.01271. Boot, T., & Pick, A. (2020). Does modeling a structural break improve forecast accuracy? Journal of Econometrics, 215(1), 35–59. Burnham, K. P., & Anderson, D. R. (2004). Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods & Research, 33(2), 261–304. Coulombe, P. G., Leroux, M., Stevanovic, D., & Surprenant, S. (2020). How is Machine Learning Useful for Macroeconomic Forecasting? arXiv:2008.12477 [Econ, Stat]. Dauphin, Y. N., Fan, A., Auli, M., & Grangier, D. (2017). Language Modeling with Gated Convolutional Networks. arXiv:1612.08083 [Cs]. Diebold, F. X. (1998). The Past, Present, and Future of Macroeconomic Forecasting. Journal of Economic Perspectives, 12(2), 175–192. Dritsaki, C. (2016). Forecast of Sarima Models: Αn Application to Unemployment Rates of Greece. American Journal of Applied Mathematics and Statistics, 4(5), 136–148. Elliott, G., & Timmermann, A. (2008). Economic Forecasting. Journal of Economic Literature, 46(1), 3–56. Hall, A. S., & Cook, T. R. (2017). Macroeconomic Indicator Forecasting with Deep Neural Networks. Federal Reserve Bank of Kansas City. Hansen, B. E. (2001). The New Econometrics of Structural Change: Dating Breaks in U.S. Labour Productivity. Journal of Economic Perspectives, 15(4), 117–128. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. arXiv:1512.03385 [Cs]. Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. Hyndman, R. J., & Khandakar, Y. (2008). Automatic Time Series Forecasting: The forecast Package for R. Journal of Statistical Software, 27(1), 1–22. Kuan, C.-M., & White, H. (1994). Artificial neural networks: An econometric perspective. Econometric Reviews, 13(1), 1–91. Layard, R., Nickell, S., & Jackman, R. (1991). Unemployment: Macroeconomic Performance and the Labour Market. Oxford University Press. Lee, T. H., White, H., & Granger, C. (1993). Testing for neglected nonlinearity in time series models: A comparison of neural network methods and alternative tests. Journal of Econometrics, 56(3), 269–290. Lucas, R. E. (1976). Econometric policy evaluation: A critique. Carnegie- Rochester Conference Series on Public Policy, 1, 19–46. Merity, S., Keskar, N. S., & Socher, R. (2017). Regularizing and Optimizing LSTM Language Models. arXiv:1708.02182 [Cs]. Montgomery, A. L., Zarnowitz, V., Tsay, R. S., & Tiao, G. C. (1998). Forecasting the U.S. Unemployment Rate. Journal of the American Statistical Association, 93(442), 478–493. https://doi.org/10.2307/2670094 Nair, V., & Hinton, G. E. (2010). Rectified Linear Units Improve Restricted Boltzmann Machines. In. Oord, A. van den, Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., … Kavukcuoglu, K. (2016). WaveNet: A Generative Model for Raw Audio. arXiv:1609.03499 [Cs]. Salimans, T., & Kingma, D. P. (2016). Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks. arXiv:1602.07868 [Cs]. Stock, J., & Watson, M. (1999). Cointegration, Causality and Forecasting: A Festschrift for Clive W.J. Granger. Oxford: Oxford University Press. Swanson, N., & White, H. (1997). A Model Selection Approach To Real- Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks. The Review of Economics and Statistics, 79(4), 540–550. Teräsvirta, T., Lin, C.-F., & Granger, C. W. J. (1993). Power of the Neural Network Linearity Test. Journal of Time Series Analysis, 14(2), 209–220. US Census Bureau, B. C. M. (2017). X-13ARIMA-SEATS Seasonal Adjustment Program. US Census Bureau. Retrieved from https://www.census. gov/srd/www/x13as/ Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. J. (1989). Phoneme recognition using time-delay neural networks. IEEE Transactions on Acoustics, Speech, and Signal Processing. Wei, W. W. S. (2005). Time Series Analysis : Univariate and Multivariate Methods. Boston. Zeileis, A., Kleiber, C., Krämer, W., & Hornik, K. (2003). Testing and Dating of Structural Changes in Practice. Computational Statistics & Data Analysis, 44, 109–123. Zhu, X., & Wu, X. (2004). Class Noise vs. Attribute Noise: A Quantitative Study. Artificial Intelligence Review. Zivot, E., & Andrews, D. W. K. (1992). Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis. Journal of Business & Economic Statistics, 10(3), 251–270. |