帳號:guest(18.117.73.38)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡文杰
作者(外文):Tsai, Wen-Jie
論文名稱(中文):以電漿輔助化學氣相沉積法鍍製氮氧化矽薄膜其光學特性與機械特性之探討
論文名稱(外文):Study of the optical and mechanical properties of silicon oxynitride thin films fabricated by plasma enhanced chemical vapor deposition
指導教授(中文):趙煦
指導教授(外文):Chao, Shiuh
口試委員(中文):陳至信
蔡東昇
口試委員(外文):Chen, Jyh-Shin
Tsai, Dung-Sheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:107066547
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:75
中文關鍵詞:電漿輔助化學氣相沉積法氮氧化矽光學吸收機械損耗
外文關鍵詞:PECVDoxynitrideoptical absorptionmechanical loss
相關次數:
  • 推薦推薦:0
  • 點閱點閱:597
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
雷射干涉重力波偵測天文台(LIGO)利用大型麥克森干涉儀偵測重力波,由於重力波訊號相當微弱又容易受到各種雜訊干擾,所以必須降低環境雜訊以提高重力波探測系統的靈敏度。反射鏡薄膜材料的熱擾動雜訊為影響系統的雜訊來源之一,根據fluctuation-dissipation theorem得知此雜訊與材料之機械損耗成正比。此外做為光學應用之高反射鏡薄膜也必須擁有良好的光學性質,因此研發低機械損耗且光學特性良好之薄膜材料為本實驗室的主要研究方向。
先前本實驗室已利用PECVD開發出氮化矽薄膜材料SiN0.33H0.58,其具備高折射係數、低且平坦的低溫機械損耗,但薄膜的光學吸收偏高;而低折射係數材料目前只有研發出SiO2薄膜,SiO2的優點為具有低折射率與低光學吸收,但其缺點為過高的低溫機械損耗以及因Si-O-Si鍵之two-level system而具有機械損耗峰值,為了改善此問題我們提出將氮原子加入SiO2形成氮氧化矽的想法,預期減少Si-O鍵結以改善低溫機械損耗峰值。本研究使用PECVD鍍製氮氧化矽薄膜並透過改變反應氣體N2O與SiH4的流量比例以調整薄膜之特性,量測與分析不同流量比之氮氧化矽薄膜的成分組成、應力、楊氏係數、光學特性及機械損耗。
研究結果顯示,隨著N2O/SiH4流量比例降低,氮氧化矽薄膜材料內Si-N鍵濃度上升而Si-O鍵濃度減少其低溫機械損耗隨之下降,並且改善機械損耗峰值的大小,整體而言氮氧化矽材料之機械損耗皆低於二氧化矽,同時又保有低折射係數及低光學吸收之特性,因此我們透過Essential Macleod以氮氧化矽材料與SiN0.33H0.58設計出高反射鏡堆疊結構並評估其穿透率及光學吸收,接著計算此高反射鏡堆疊膜的熱雜訊理論值並與下世代重力波探測站規格比較,由結果得知氮化矽/氮氧化矽之高反射鏡堆疊膜的熱雜訊理論值與下世代重力波偵測站規格相近,更低於KAGAR規格1.5倍,因此可期待氮化矽/氮氧化矽堆疊膜應用於下世代LIGO重力波探測系統。
Laser Interferometer Gravitational-Wave Observatory (LIGO) uses the large Michelson interferometer to observe the gravitational wave directly. Due to the signal of the gravitational wave is quite weak and is impacted by various noise easily, it is important that increasing the sensitivity of the detector by reducing the environmental noise. The coating Brownian noise which is contributed from the materials coated on the high-refractive mirror is one of the noise types influencing the measuring systems. According to the fluctuation-dissipation theorem, the coating Brownian noise is proportional to the mechanical loss of the materials. Additionally, the coating materials of the high-refractive mirror must have excellent optical characteristics. Therefore, we have been dedicated to developing thin-film materials with low mechanical loss and outstanding optical properties.
Our research group developed NH3-free silicon nitride thin film, SiN0.33H0.58, which had a high refractive index and low cryogenic loss without loss peak; however, slightly higher optical absorption. On the other hand, the silica film has been only one low-index material that we have developed so far. The advantages of silica film are low refractive index and low optical absorption; however, the silica film has the higher cryogenic loss with the loss peak caused by the two-level systems of the Si-O-Si bond. To improve this problem, we came up with adding nitrogen atom in silica to form silicon oxynitride. We expected that the concentration of the Si-O bond in the film would decrease, and the cryogenic loss peak would be optimized. In this investigation, we used PECVD to fabricate the silicon oxynitride films and tuned the properties of films by varying N2O to SiH4 flow-rate ratio. Moreover, we measured the different silicon oxynitride films composition, stress, Young’s modulus, optical properties, and mechanical loss.
The experimental results showed that the N2O/SiH4 flow-rate ratio decreased which led to increasing the Si-N bond concentration in the films, declining the Si-O bond concentration, the cryogenic loss of film, and the loss peak. The silicon oxynitride films in this research not only had lower cryogenic loss than silica but also remained low-index and low absorption. Therefore, we used SiN0.33H0.58 and silicon oxynitride to design the high-refractive mirror structures by the simulation software Essential Macleod, meanwhile evaluating the transmittance and optical absorption of the HR mirror structures. The coating thermal noise of the HR mirror stack was also calculated and compared to the specification of the coating thermal noise of the mirrors applied in the next-generation gravitational wave detectors. The results showed that the theoretical coating thermal noise of the silicon nitride/silicon oxynitride HR mirror stack was close to the specification of ET-LF and LIGO Voyager. Besides, the theoretical value was approximately 1.5 times lower than the specification of KAGRA. Therefore, we expect that the silicon nitride/silicon oxynitride HR mirror stack will be used for the next-generation LIGO gravitational wave detection system.
Abstract i
摘要 iii
致謝 iv
目錄 v
圖目錄 vii
表目錄 x
第一章、導論 1
1-1 前言 1
1-2 研究動機 3
第二章、不同成分比之氮氧化矽薄膜材料組成分析 7
2-1 氮氧化矽薄膜製程介紹 7
2-2 氮氧化矽薄膜材料成分分析 10
2-2.1 薄膜材料之元素成分比例 10
2-2.2 薄膜材料之質量密度 12
2-2.3 薄膜材料之懸鍵密度 13
2-2.4 薄膜材料之鍵結密度與原子密度 15
第三章、不同成分比之氮氧化矽薄膜基本特性分析 23
3-1 薄膜材料之折射係數與能隙分析 23
3-2 薄膜材料之應力分析 26
3-3 薄膜材料之楊氏係數分析 28
第四章、不同成分比之氮氧化矽薄膜光學吸收分析 30
4-1 光學吸收量測基本原理與架構 30
4-2 薄膜材料之光學吸收 32
第五章、不同成分比之氮氧化矽薄膜之機械特性 38
5-1 機械損耗量測系統之原理與架構 38
5-1.1 單晶矽懸臂基板製程 38
5-1.2 機械損耗基本原理 41
5-1.3 機械損耗量測系統架構 43
5-2 不同成分比之氮氧化矽薄膜低溫機械損耗 45
5-3 不同成分比之氮氧化矽薄膜室溫機械損耗 52
第六章、四分之一波長厚度之氮化矽與氮氧化矽堆疊 55
6-1 氮化矽與氮氧化矽薄膜堆疊光學模擬與相關參數計算 57
6-2 利用氮化矽與氮氧化矽之機械損耗量測值計算堆疊膜機械損耗理論值 59
6-3 氮化矽與氮氧化矽堆疊膜之bulk與shear機械損耗及CTN計算 60
第七章、總結與未來工作 64
7-1 總結 64
7-2 未來工作 67
參考文獻 68
[1] A. Einstein, “Die grundlage der allgemeinen relativitatstheorie”, Annalen der Physik 49, 769 (1916).
[2] R. A. Hulse, J. H. Taylor, “Discovery of a pulsar in a binary system”, The Astrophysical Journal 195, L51 (1975).
[3] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Observation of gravitational waves from a binary black hole merger”, Phys. Rev. Lett. 116, 061102 (2016).
[4] LIGO Scientific Collaboration, Instrument Science White Paper 2019, LIGO Document: LIGO-T1900409-v2 (2019).
[5] H. B. Callen, T. A. Weltont. Irreversibility and generalized noise. Phys. Rev., Jul. 83,34-40 (1951).
[6] R. F. Greene, H. B. Callen. On the formalism of thermodynamic fluctuation theory. Phys. Rev., 83: 1231-1235 (1951).
[7] H. B. Callen, R. F. Greene, On a theorem of irreversible thermodynamics., Phys. Rev. 86,702-710 (1952).
[8] ET Science Team, “Einstein gravitational wave telescope conceptual design study: ET-0106C-10” (European gravitational observatory, Cascina Italy, 2011) https://tds.virgo-gw.eu/?call_file=ET-0106C-10.pdf
[9] K. Somiya, “Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector”, Class. Quantum Grav. 29, 124007 (2012).
[10] R. Adhikari et al., “LIGO III Blue Concept LIGO”, LIGO Report No. LIGO-G1200573, 2012, http://dcc.ligo.org/LIGO-G1200573-v1/public
[11] I. W. Martin et al., “Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2”, Class. Quantum Grav. 26, 155012 (2009).
[12] I. W. Martin et al., Low temperature mechanical dissipation of an ion-beam sputtered silica film, Class. Quantum Grav., 31, 035019 (2014).
[13] Z. L. Huang, The optical properties of PECVD silicon nitride films after thermal annealing, and the optical and mechanical properties of NH3-free PECVD silicon nitride films, Master thesis, National Tsing Hua University (2019).
[14] H. Wu, Cryogenic mechanical loss of SiNxHy and SiN0.40H0.79/SiO2 stacks deposited by plasma enhanced chemical vapor deposition method, Master thesis, National Tsing Hua University (2017).
[15] O. L. Anderson, H. E. Bommel, Ultrasonic absorption in fused silica at low temperatures and high frequencies, Journal of the American Ceramic Society 38, 125–131 (1955).
[16] R. E. Strakna, Investigation of low temperature ultrasonic absorption in fast-neutron irradiated SiO2 glass, Physical Review 123, 2020–2026 (1961).
[17] W. A. Phillips, “Two-level states in glasses”, Rep. Prog. Phys. 50, 1657-1708 (1987).
[18] R. Hamdan, J. P. Trinastic, and H. P. Cheng, “Molecular dynamics study of the mechanical loss in amorphous pure and doped silica”, J. Chem. Phys. 141, 054501 (2014).
[19] M. Alayo, I. Pereyra, W. Scopel, and M. Fantini, “On the nitrogen and oxygen incorporation in plasma-enhanced chemical vapor deposition (PECVD) SiOxNy films,” Thin Solid Films. 402, 154–161 (2002).
[20] D. Criado, I. Pereyra, and M. Alayo, “Study of nitrogen-rich silicon oxynitride films obtained by PECVD,” Materials Characterization. 50, 167–171 (2003).
[21] M. Hussein, K. Wörhoff, G. Sengo, and A. Driessen, “Optimization of plasma-enhanced chemical vapor deposition silicon oxynitride layers for integrated optics applications,” Thin Solid Films. 515, 3779–3786 (2007).
[22] Domı́nguez Carlos, Rodrı́guez José A., F. J. Muñoz, and N. Zine, “Plasma enhanced CVD silicon oxide films for integrated optic applications,” Vacuum. 52, 395–400 (1999).
[23] A. D. Prado, E. S. Andrés, I. Mártil, G. González-Diaz, D. Bravo, F. J. López, W. Bohne, J. Röhrich, B. Selle, and F. L. Martínez, “Optical and structural properties of SiOxNyHz films deposited by electron cyclotron resonance and their correlation with composition,” Journal of Applied Physics. 93, 8930–8938 (2003).
[24] A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, “Infrared study of Si-rich silicon oxide films deposited by plasma-enhanced chemical vapor deposition,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 15, 377–389 (1997).
[25] A. Stoffel, A. Kovács, W. Kronast, and B. Muller, “A LPCVD against PECVD for micromechanical applications”, J. Micromech. Microeng. 6, 1 (1996).
[26] D. Resnik, U. Aljančič, D. Vrtačnik, M. Možek, and S. Amon, “Mechanical stress in thin film microstructures on silicon substrate,” Vacuum. 80, 236–240 (2005).
[27] F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Optical Materials. 26, 33–46 (2004).
[28] K. Petersen, “Dynamic micromechanics on silicon: Techniques and devices,” IEEE Transactions on Electron Devices. 25, 1241–1250 (1978).
[29] T. R. Lenka and A. K. Panda, “AlGaN/GaN-based HEMT on SiC substrate for microwave characteristics using different passivation layers,” Pramana. 79, 151–163 (2012).
[30] F. Mandl et al., Statistical Physics (2nd Edition), John Wiley & Sons, (2008).
[31] H.D. Young, R.A. Freedman, University Physics – With Modern Physics (12th Edition), Addison-Wesley (2008).
[32] J. Dupuis, E. Fourmond, J. Lelièvre, D. Ballutaud, and M. Lemiti, “Impact of PECVD SiON stoichiometry and post-annealing on the silicon surface passivation,” Thin Solid Films. 516, 6954–6958 (2008).
[33] L. He, T. Inokuma, Y. Kurata, and S. Hasegawa, “Vibrational properties of SiO and SiH in amorphous SiOx:H films (0 ≤ x ≤ 2.0) prepared by plasma-enhanced chemical vapor deposition,” Journal of Non-Crystalline Solids. 185, 249–261 (1995).
[34] W. Scopel, M. Fantini, M. Alayo, and I. Pereyra, “Local structure and bonds of amorphous silicon oxynitride thin films,” Thin Solid Films. 413, 59–64 (2002).
[35] X. Tan, J. Wojcik, and P. Mascher, “Study of the optical properties of SiOxNy thin films by effective medium theories,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 22, 1115–1119 (2004).
[36] Y. Wang, X. Cheng, Z. Lin, C. Zhang, and F. Zhang, “Optimization of PECVD silicon oxynitride films for anti-reflection coating,” Vacuum. 72, 345–349 (2003).
[37] B. Hallam, B. Tjahjono, and S. Wenham, “Effect of PECVD silicon oxynitride film composition on the surface passivation of silicon wafers,” Solar Energy Materials and Solar Cells. 96, 173–179 (2012).
[38] H. Shanks, C. J. Fang, L. Ley, M. Cardona, F. J. Demond, and S. Kalbitzer, “Infrared spectrum and structure of hydrogenated amorphous silicon”, Phys. Status Solidi 100, 43 (1980).
[39] C. J. Fang, K. J. Gruntz, L. Ley, M. Cardona, F. J. Demond, G. Muller, and S. Kalbitzer, “The hydrogen content of a-Ge:H and a-Si:H as determined by IR spectroscopy, gas evolution and nuclear reaction techniques”, J. Non-Cryst. Solids 35-36, 255 (1980)
[40] A. Morimoto, Y. Tsujimura, M. Kumeda, and T. Shimizu, “Properties of hydrogenated amorphous Si-N prepared by various methods”, Jpn. J. Appl. Phys. 24, 1394 (1985).
[41] H. C. Chen, Annealing effect on the room temperature mechanical loss of the silicon nitride films deposited with PECVD on silicon cantilever, Master thesis, National Tsing Hua University (2017)
[42] L. A. Chang, Annealing effect on the optical and mechanical properties of nitrogen-rich silicon nitride film fabricated by plasma enhance chemical vapor deposition, Master thesis, National Tsing Hua University (2018)
[43] J. Rostaing, Y. Cros, S. Gujrathi, and S. Poulain, “Quantitative infrared characterization of plasma enhanced CVD silicon oxynitride films,” Journal of Non-Crystalline Solids. 97-98, 1051–1054 (1987).
[44] Z. Yin and F. W. Smith, “Tetrahedron model for the optical dielectric function of hydrogenated amorphous silicon nitride alloys,” Physical Review B. 42, 3658–3665 (1990).
[45] T. Makino and M. Maeda, “Bonds and Defects in Plasma-Deposited Silicon Nitride Using SiH4-NH3-Ar Mixture,” Japanese Journal of Applied Physics, vol. 25, 1300–1306 (1986).
[46] V. Verlann, et al., “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD”, Thin Solid Films 517, 3499 (2009).
[47] A. Sassella, “Tetrahedron model for the optical dielectric function of H-rich silicon oxynitride,” Physical Review B. 48, 14208–14215 (1993).
[48] D. Jousse, J. Kanicki, D. T. Krick, and P. M. Lenahan, “Electron-spin-resonance study of defects in plasma-enhanced chemical vapor deposited silicon nitride”, Appl. Phys. Lett. 52, 445 (1988).
[49] F. C. Kuei, Master thesis, National Tsing Hua University (2020)
[50] C. Ance, F. D. Chelle, J. P. Ferraton, G. Leveque, P. Ordejón, and F. Ynduráin, “Optical absorption in plasma‐deposited silicon oxynitride films,” Applied Physics Letters. 60, 1399–1401 (1992).
[51] A. N. Trukhin, “Investigation of the photoelectric and photoluminescent properties of crystalline quartz and vitreous silica in the fundamental absorption region. A model for electronic structure and migration of energy in SiO2,” Physica Status Solidi (b). 86, 67–75 (1978).
[52] Z. A. Weinberg, G. W. Rubloff, and E. Bassous, “Transmission, photoconductivity, and the experimental band gap of thermally grown SiO2films,” Physical Review B. 19, 3107–3117 (1979).
[53] 李正中, “薄膜光學與鍍膜技術”, 第七版, 藝軒圖書出版社(2012).
[54] G. Gerald Stoney “The tension of metallic films deposited by electrolysis,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 82, 172–175 (1909).
[55] C. W. Lee, Study of the material properties and the mechanical loss of the silicon nitride films deposited by PECVD method on silicon cantilever for laser interference gravitational wave detector application , Master thesis, National Tsing Hua University (2013).
[56] Y. H. Juang, Stress effect on mechanical loss of the SiNx film deposited with PECVD method on silicon cantilever and setup for the loss measurement improvement, Master thesis, National Tsing Hua University (2014).
[57] W. Oliver and G. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research. 7, 1564–1583 (1992).
[58] Y. Liu, I.-K. Lin, and X. Zhang, “Mechanical Properties of Sputtered Silicon Oxynitride Films by Nanoindentation,” MRS Proceedings. 1049 (2007).
[59] M. Józwik, P. Delobelle, C. Gorecki, A. Sabac, L. Nieradko, C. Meunier, and F. Munnik, “Optomechanical characterisation of compressively prestressed silicon oxynitride films deposited by plasma-enhanced chemical vapour deposition on silicon membranes,” Thin Solid Films. 468, 84–92 (2004).
[60] J. Yoo, S. Dhungel, and J. Yi, “Properties of plasma enhanced chemical vapor deposited silicon nitride for the application in multicrystalline silicon solar cells,” Thin Solid Films. 515, 5000–5003 (2007).
[61] C. J. Tang, C. C. Jaing, C. L. Tien, W. C. Sun, and S. C. Lin, “Optical, Structural and Mechanical Properties of Silicon-Oxynitride Films Prepared by Pulsed Magnetron Sputtering,” Optical Interference Coatings 2016 (2016).
[62] https://www.corning.com/
[63] N. C. Kang, Photothermal common path interferometry system setup and study of the optical absorption of the silicon nitride film deposited by PECVD method, Master thesis, National Tsing Hua University (2017).
[64] R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Applied Optics. 46, 8118 (2007).
[65] M. Khashan and A. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2–3 μm,” Optics Communications. 188, 129–139 (2001).
[66] W. Y. Wang, Study of mechanical vibration and loss of silicon cantilever for development of the high-reflection mirror in the laser interference gravitational wave detector. Master thesis, National Tsing Hua University (2013)
[67] S. T. Thornton, J. B. Marion. Classical dynamics of particles and systems. Brooks Cole, 5: 109-121 (2003).
[68] Y. Y. Hsu, Master thesis, National Tsing Hua University (2020)
[69] C. Cheng, Cryogenic mechanical loss measurement system setup and annealing effect on the mechanical loss of the nano-layer coatings, Master thesis, National Tsing Hua University (2015).
[70] J. S. Oul, Setup of room temperature mechanical loss measurement and preliminary measurement results on fused silica and silicon cantilevers, Master thesis, National Tsing Hua University (2012).
[71] M. Y. Wu, Room Temperature Mechanical Loss of SiN0.40/SiO2 Quarter-wave Stacks Deposited by Plasma Enhanced Chemical Vapor Deposition Method, Master thesis, National Tsing Hua University (2016).
[72] H. W. Pan, Study of silicon nitride and silica films fabricated by a plasma enhanced chemical vapor deposition method for low thermal noise mirror coating of laser interferometer gravitational wave detectors, PhD Thesis, National Tsing Hua University (2018).
[73] L. C. Kuo, Study on nano-layers of titania and silica deposited by ion beam sputtering for mirror coatings of laser interferometer gravitational wave detector, PhD Thesis, National Tsing Hua University (2019).
[74] M. M. Fejer, S. Rowan, G. Cagnoli, D. R. M. Crooks, A. Gretarsson, G.M. Harry, J. Hough, S. D. Penn, P. H. Sneddon, and S. P. Vyatchanin, “Thermoelastic dissipation in inhomogeneous media: loss measurements and displacement noise in coated test masses for interferometric gravitational wave detectors”, Phys. Rev. D 70, 082003 (2004).
[75] H. J. McSkimin, “Measurement of elastic constants at low temperatures by means of ultrasonic waves–data for silicon and germanium single crystals, and for fused silica”, J. Appl. Phys. 24, 988 (1953).
[76] R. M. Jones, in Mechanics of Composite Materials, 2nd ed., (CRC Pres, 1998)
[77] J. Steinlechner, I. W. Martin, J. Hough, C. Krüger, S. Rowan, and R. Schnabel, “Thermal noise reduction and absorption optimization via multimaterial coatings,” Physical Review D. 91, no. 4 (2015).
[78] T. Hong, H. Yang, E. K. Gustafson, R. X. Adhikari, and Y. Chen, “Brownian thermal noise in multilayer coated mirrors”, Phys. Rev. D 87, 082001 (2013).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 降低以電漿輔助化學氣相沉積法鍍製之氮氧化矽薄膜光學吸收之研究
2. 以電漿輔助化學氣相沉積法鍍製高氮氮化矽薄膜其熱退火對光學特性與機械特性之影響
3. 以電漿輔助化學氣相沉積法鍍製於矽懸臂之氮化矽其熱退火後對於室溫機械損耗之影響
4. 以電漿輔助化學氣相沉積法沉積氮化矽薄膜及其與二氧化矽之堆疊膜之低溫機械損耗
5. 利用電漿輔助化學氣相沉積法鍍製低熱雜訊之氮化矽與氧化矽薄膜應用於雷射干涉重力波偵測器反射鏡之研究
6. 利用電漿輔助化學氣相沉積法鍍製氮化矽與氮氧化矽薄膜建構光學吸收經驗公式
7. 利用電漿輔助化學氣相沉積法鍍製四分之一光學厚度氮氧化矽與氮化矽堆疊膜應用於雷射干涉重力波偵測器反射鏡之研究
8. 熱退火對電漿輔助化學氣相沉積法鍍製之高含氧量氮氧化矽薄膜其光學特性與機械特性影響之探討
9. 光熱共光路干涉儀系統之設置與電漿輔助化學氣象沉積法沉積之氮化矽薄膜光學吸收研究
10. 以電漿輔助化學氣相沉積法鍍製之低氮氮化矽薄膜經熱退火後光學特性及室溫機械損耗之研究
11. 以離子束濺鍍法鍍製氮化矽薄膜其光學特性之探討
12. 以補氫退火方式降低以電漿輔助化學氣相沉積法鍍製之高含氮量氮氧化矽薄膜光學特性與機械特性之研究
13. 以低壓化學氣相沉積法鍍製之氮化矽薄膜在雷射重力波偵測器反射鏡應用之研究
14. 以電漿輔助化學氣相沈積法於矽懸臂沈積之氮化矽薄膜應力對機械損耗之影響暨機械損耗量測系統改善
15. 利用電漿輔助化學氣相沉積法鍍製四分之一波長厚度SiN0.40/SiO2堆疊之室溫機械損耗
 
* *