|
參考文獻 [1]Scientific, L. I. G. O., Virgo Collaboration, and B. P. Abbott. "Erratum: Tests of General Relativity with GW150914 [Phys. Rev. Lett. 116, 221101 (2016)]." Physical review letters 121.12 (2018): 129902. [2]Bassan, Massimo. "Advanced interferometers and the search for gravitational waves." Astrophysics and Space Science Library 404 (2014): 275-290. [3]H. B. Callen, T. A.Welton, Irreversibility and generalized noise, Physical Review 83, 34–40. (1951) [4]Abernathy, M. "Einstein Gravitational Wave Telescope (ET) conceptual design study: ET-0106C-10." (2011). [5]Somiya, Kentaro. "Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector." Classical and Quantum Gravity 29.12 (2012): 124007. [6]Adhikari, R. "LIGO III Blue ConceptLIGO." Technical Document LIGO-G1200573. See dcc. ligo. org/LIGO-G1200573-v1/public (2012). [7]D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger., “Thermally activated relaxation processes in vitreous silica: An investigation by Brillouin scattering at high pressures”, Phys. Rev. B 45, 2750 -2760 (1992) [8]D. G. Cahill and J. E. Van Cleve, “Torsional oscillator for internal friction data at 100 kHz”, Rev. Sci. Instrum. 60, 2706-2710 (1989). [9]J. W. Marx, and J. M. Sivertsen, “Temperature dependence of the elastic moduli and internal friction of silica and glass”, J. Appl. Phys. 24, 81-87 (1953). [10]I. W. Martin, R. Nawrodt, K. Craig, C. Schwarz, R. Bassiri, G. Harry, J. Hough, S. Penn, S. Reid, R. Robie, and S. Rowan, “Low temperature mechanical dissipation of an ion-beam sputtered silica film”, Class. Quantum Grav. 31, 035019 (2014). [11]R. Hamdan, J. P. Trinastic, H. P. Cheng, Molecular dynamics study of the mechanical loss in amorphous pure and doped silica, The Journal of Chemical Physics 141, 054501 (2014) [12]Hai-Ping Cheng, Origin of the second peak in the mechanical loss function of amorphous silica, Phy. Rev. B 95, 014109 (2017) [13]H.W. Pan et al., Silicon nitride films fabricated by a plasma-enhanced chemical vapor deposition method for coatings of the laser interferometer gravitational wave detector, Phys. Rev. D.97.022004 (2018) [14]黃榛莉, “電漿輔助化學氣相沉積之氮化矽薄膜其熱退火後光學特性與無氨氣電漿輔助化學氣相沉積法之氮化矽薄膜其光學及機械特性之探討” , 國立清華大學碩士論文 (2019) [15]黃文正, “以離子束濺鍍法製作低損耗薄膜應用於雷射干涉重力波偵測儀之高反射鏡製程準備”, 國立清華大學碩士論文 (2012) [16]Vitkavage, D. J., and T. M. Mayer. "Target contamination by cathode sputtering in broad beam ion sources." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 6.1 (1988): 154-155. [17]王順錦, “應用於雷射干涉重力波偵測儀之以離子束濺鍍法製作之奈米膜層結構高反射鏡及其結晶條件之探討”, 國立清華大學碩士論文 (2013) [18]康乃中, “光熱共光路干涉儀系統之設置與電漿輔助化學氣象沉積法沉積之氮化矽薄膜光學吸收研究”, 國立清華大學碩士論文 (2013) [19]桂芳成, “以電漿輔助化學氣象沉積之氮化矽薄膜之光學吸收研究” , 國立清華大學碩士論文 (2020) [20]Chen, Yu-Chun. "Exploration of TiO2 nanorods using sputtering" National Cheng Kung University - NCKU (2012): 1-82. [21]劉冠廷, “以離子束濺鍍法鍍製氮化矽薄膜其光學特性之探討” , 國立清華大學碩士論文 (2020) [22]Kitabatake, Makoto, and Kiyotaka Wasa. "Hydrogen‐free SiN films deposited by ion beam sputtering." Applied physics letters 49.15 (1986): 927-929. [23]Roth, Alexander. Vacuum technology. Elsevier, 2012. [24]Fremerey, Johan K. "Residual gas: traditional understanding and new experimental results." Vacuum 53.1-2 (1999): 197-201. [25]Schneider, Jochen M., et al. "On the effect of hydrogen incorporation in strontium titanate layers grown by high vacuum magnetron sputtering." Applied physics letters 75.22 (1999): 3476-3478. [26]Chiang, Donyau, et al. "Determination of the Refractive Index of Molybdenum Using a Spectrophotometric Method." Sensors and Materials 31.11 (2019): 3517-3526. [27]Yamada, Itsunari, et al. "Near-infrared polarizer with tungsten silicide wire grids." Japanese Journal of Applied Physics 50.1R (2011): 012502. [28]蔡文杰, “以電漿輔助化學氣相沉積法鍍製氮氧化矽薄膜其光學特性與機械特性之探討”, 國立清華大學碩士論文 (2020) [29]von Bohlen, Alex, and Reinhold Klockenkämper. "Parasitic ion-implantation produced by a Kaufman-type ion source used for planar etching of surfaces." Analytical and bioanalytical chemistry 382.8 (2005): 1975-1980. [30]Becker, Jurgen, and Volker Scheuer. "Coatings for optical applications produced by ion beam sputter deposition." Applied optics 29.28 (1990): 4303-4309. [31]McNeil, John R., et al. "Properties of TiO 2 and SiO 2 thin films deposited using ion assisted deposition." Applied optics 24.4 (1985): 486-489. [32]Vitkavage, D. J., and T. M. Mayer. "Target contamination by cathode sputtering in broad beam ion sources." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 6.1 (1988): 154-155. [33]Nelson, R. Sc. "An investigation of thermal spikes by studying the high energy sputtering of metals at elevated temperatures." Philosophical Magazine 11.110 (1965): 291-302. [34]Birney, Ross, et al. "Amorphous silicon with extremely low absorption: beating thermal noise in gravitational astronomy." Physical review letters 121.19 (2018) [35]黃柏豪, “以離子束濺鍍法鍍製奈米多層薄膜其光學特性之退火校應與離子束濺鍍法鍍製氮化矽薄膜之材料特性分析” , 國立清華大學碩士論文 (2019) |