帳號:guest(3.14.133.127)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳俊廷
作者(外文):Chen, Jun-Ting
論文名稱(中文):以離子束濺鍍法鍍製氮氧化矽薄膜探討其光學特性
論文名稱(外文):Study on the optical properties of silicon oxynitride films deposited by ion beam sputter
指導教授(中文):趙煦
指導教授(外文):Chao, Shiuh
口試委員(中文):陳至信
蔡東昇
口試委員(外文):Chen, Jyh- Shin
Tsai, Dung-Sheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:107066537
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:51
中文關鍵詞:氮氧化矽薄膜重力波光學吸收金屬汙染物離子束濺鍍系統
外文關鍵詞:oxynitride filmgravitational waveabsorptionmetal contaminationion beam sputter
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
雷射干涉重力波天文台(Laser Interferometer Gravitational-Wave Observatory, LIGO)利用大型麥克森干涉儀偵測重力波,由於重力波訊號相當微弱,故排除量測雜訊以提高靈敏度是首要研究課題。而在總體雜訊最低的100Hz處,其主要雜訊為材料本身所產生的薄膜熱擾動雜訊(Coating Brownian noise),且不易於量測,故藉由與其成正比之機械損耗來判斷。此外,做為高反射鏡的材料也需考量其光學特性,因此本實驗室致力於開發低機械損耗與低光學吸收之薄膜材料。
本論文的研究重點是利用離子束濺鍍系統鍍製氮氧化矽薄膜,通過調變鍍膜參數之Beam voltage與通入腔內作為製程反應氣體之氧氣流量,分別探討材料之光學特性(折射率、消光係數)、材料內的鍵結變化、材料化學成分變化、材料之微量金屬汙染物,並將其統整進行一系列的深入探討,此外,筆者在鍍膜過程中所遇到的問題也將於此論文中提及,包含打火現象、離子束短路現象、離子源過熱所引起的問題。
研究結果顯示,氮氧化矽材料其氮含量與鍍膜參數之Beam voltage呈負相關,亦指隨著Beam voltage下降致使膜中的氮含量上升,但增加幅度較微小。於腔體添加氧氣進行鍍膜時,發現材料之光學吸收有大幅下降之現象,但隨著氧流量的增加,材料光學吸收之降幅趨緩,而造成此原因乃材料之金屬微量汙染物所導致。其中微量金屬汙染物是導致材料之消光係數維持在10-4之主因,因此本論文將會提到如何降低薄膜內金屬汙染物的方法。
Laser Interferometer Gravitational-Wave Observatory (LIGO) detects the gravitational wave signal with a large Michelson interferometer. Since the signal of gravitational wave is very weak, hence the primary goal is to reduce the measurement noise to enhance the sensitivity of the detector. There is the lowest total noise at frequency of 100Hz and the dominant noise is the coating thermal noise which is difficult to measure directly. According to the Fluctuation-Dissipation theorem, we know the coating thermal noise is proportional to the mechanical loss of the film. Therefore, our laboratory is dedicated to develop the film, which possesses the low mechanical loss and low optical absorption.
In this study, we used an ion beam sputter system to deposit silicon oxynitride films. We adjusted the beam voltage of the ion source and the oxygen flow rate of the process gas. We discussed the optical properties of the film (refractive index, extinction coefficient), the bonding of the film, the chemical composition of the film, the trace metal contaminants of the film, and comprehensively conduct a series of discussion. Besides, we will mention the problems we found in the research, including arching phenomenon,ion beam short circuit and ion source overheating.
According to the research results, the nitrogen content of the silicon oxynitride film was negatively correlated with the beam voltage, which also meant that as the beam voltage decreased, the nitrogen content of the film increased. When we added oxygen as a reaction gas in the process, we found that the optical absorption of the film was greatly reduced. However, as the oxygen flow rate increased, the optical absorption of the film decreased slowly. This phenomenon was caused by the trace metal contaminants in the film. In addition, trace metal contaminants in the film is the main reason that the extinction coefficient of the film cannot be lower than 10-4. Therefore, we will provide a method to reduce the metal contaminants in the film.
Abstarct i
摘要 iii
誌謝 iv
目錄 vi
圖目錄 viii
表目錄 x
第一章 導論 1
1.1 前言 1
1.2 研究動機 3
第二章 離子束濺鍍系統 5
2.1 離子束濺鍍原理 5
2.2 操作流程 6
2.3 鍍膜過程中的問題與探討 8
2.3-1 燈絲與離子源長時間使用對鍍膜不良的影響 8
2.3-2 離子源過熱的應變步驟 9
第三章 氮氧化矽薄膜特性分析 11
3.1 探討薄膜特性之折射率、元素成份、沉積速率 11
3.2 薄膜光學吸收 17
3.2-1 光學吸收量測原理與架構 17
3.2-2 改變Beam voltage探討矽懸鍵與氫鍵對光學吸收的影響 19
3.2-3 增加氧含量以降低膜內矽懸鍵使薄膜光學吸收下降 21
3.2-4 氫的可能來源與解決方法 22
第四章 汙染物對薄膜光學吸收的影響 25
4.1 冷卻系統更換前後之汙染物含量與光學吸收的比較 25
4.2 改變Beam voltage之汙染物含量與光學吸收的比較 30
4.3 探討金屬汙染物來源與解決方法 32
4.3-1 考夫曼離子源之金屬汙染物來源 32
4.3-2 離子束系統之冷卻效率上升使金屬汙染物下降之原因 35
4.3-3 金屬汙染物總結 36
第五章 總結與未來工作 40
5.1 總結 40
5.2 未來工作 41
附錄A 離子束濺鍍法鍍製氮化矽與氮氧化矽之經歷 42
參考文獻 48

參考文獻
[1]Scientific, L. I. G. O., Virgo Collaboration, and B. P. Abbott. "Erratum: Tests of General Relativity with GW150914 [Phys. Rev. Lett. 116, 221101 (2016)]." Physical review letters 121.12 (2018): 129902.
[2]Bassan, Massimo. "Advanced interferometers and the search for gravitational waves." Astrophysics and Space Science Library 404 (2014): 275-290.
[3]H. B. Callen, T. A.Welton, Irreversibility and generalized noise, Physical Review 83, 34–40. (1951)
[4]Abernathy, M. "Einstein Gravitational Wave Telescope (ET) conceptual design study: ET-0106C-10." (2011).
[5]Somiya, Kentaro. "Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector." Classical and Quantum Gravity 29.12 (2012): 124007.
[6]Adhikari, R. "LIGO III Blue ConceptLIGO." Technical Document LIGO-G1200573. See dcc. ligo. org/LIGO-G1200573-v1/public (2012).
[7]D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger., “Thermally activated relaxation processes in vitreous silica: An investigation by Brillouin scattering at high pressures”, Phys. Rev. B 45, 2750 -2760 (1992)
[8]D. G. Cahill and J. E. Van Cleve, “Torsional oscillator for internal friction data at 100 kHz”, Rev. Sci. Instrum. 60, 2706-2710 (1989).
[9]J. W. Marx, and J. M. Sivertsen, “Temperature dependence of the elastic moduli and internal friction of silica and glass”, J. Appl. Phys. 24, 81-87 (1953).
[10]I. W. Martin, R. Nawrodt, K. Craig, C. Schwarz, R. Bassiri, G. Harry, J. Hough, S. Penn, S. Reid, R. Robie, and S. Rowan, “Low temperature mechanical dissipation of an ion-beam sputtered silica film”, Class. Quantum Grav. 31, 035019 (2014).
[11]R. Hamdan, J. P. Trinastic, H. P. Cheng, Molecular dynamics study of the mechanical loss in amorphous pure and doped silica, The Journal of Chemical Physics 141, 054501 (2014)
[12]Hai-Ping Cheng, Origin of the second peak in the mechanical loss function of amorphous silica, Phy. Rev. B 95, 014109 (2017)
[13]H.W. Pan et al., Silicon nitride films fabricated by a plasma-enhanced chemical vapor deposition method for coatings of the laser interferometer gravitational wave detector, Phys. Rev. D.97.022004 (2018)
[14]黃榛莉, “電漿輔助化學氣相沉積之氮化矽薄膜其熱退火後光學特性與無氨氣電漿輔助化學氣相沉積法之氮化矽薄膜其光學及機械特性之探討” , 國立清華大學碩士論文 (2019)
[15]黃文正, “以離子束濺鍍法製作低損耗薄膜應用於雷射干涉重力波偵測儀之高反射鏡製程準備”, 國立清華大學碩士論文 (2012)
[16]Vitkavage, D. J., and T. M. Mayer. "Target contamination by cathode sputtering in broad beam ion sources." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 6.1 (1988): 154-155.
[17]王順錦, “應用於雷射干涉重力波偵測儀之以離子束濺鍍法製作之奈米膜層結構高反射鏡及其結晶條件之探討”, 國立清華大學碩士論文 (2013)
[18]康乃中, “光熱共光路干涉儀系統之設置與電漿輔助化學氣象沉積法沉積之氮化矽薄膜光學吸收研究”, 國立清華大學碩士論文 (2013)
[19]桂芳成, “以電漿輔助化學氣象沉積之氮化矽薄膜之光學吸收研究” , 國立清華大學碩士論文 (2020)
[20]Chen, Yu-Chun. "Exploration of TiO2 nanorods using sputtering" National Cheng Kung University - NCKU (2012): 1-82.
[21]劉冠廷, “以離子束濺鍍法鍍製氮化矽薄膜其光學特性之探討” , 國立清華大學碩士論文 (2020)
[22]Kitabatake, Makoto, and Kiyotaka Wasa. "Hydrogen‐free SiN films deposited by ion beam sputtering." Applied physics letters 49.15 (1986): 927-929.
[23]Roth, Alexander. Vacuum technology. Elsevier, 2012.
[24]Fremerey, Johan K. "Residual gas: traditional understanding and new experimental results." Vacuum 53.1-2 (1999): 197-201.
[25]Schneider, Jochen M., et al. "On the effect of hydrogen incorporation in strontium titanate layers grown by high vacuum magnetron sputtering." Applied physics letters 75.22 (1999): 3476-3478.
[26]Chiang, Donyau, et al. "Determination of the Refractive Index of Molybdenum Using a Spectrophotometric Method." Sensors and Materials 31.11 (2019): 3517-3526.
[27]Yamada, Itsunari, et al. "Near-infrared polarizer with tungsten silicide wire grids." Japanese Journal of Applied Physics 50.1R (2011): 012502.
[28]蔡文杰, “以電漿輔助化學氣相沉積法鍍製氮氧化矽薄膜其光學特性與機械特性之探討”, 國立清華大學碩士論文 (2020)
[29]von Bohlen, Alex, and Reinhold Klockenkämper. "Parasitic ion-implantation produced by a Kaufman-type ion source used for planar etching of surfaces." Analytical and bioanalytical chemistry 382.8 (2005): 1975-1980.
[30]Becker, Jurgen, and Volker Scheuer. "Coatings for optical applications produced by ion beam sputter deposition." Applied optics 29.28 (1990): 4303-4309.
[31]McNeil, John R., et al. "Properties of TiO 2 and SiO 2 thin films deposited using ion assisted deposition." Applied optics 24.4 (1985): 486-489.
[32]Vitkavage, D. J., and T. M. Mayer. "Target contamination by cathode sputtering in broad beam ion sources." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 6.1 (1988): 154-155.
[33]Nelson, R. Sc. "An investigation of thermal spikes by studying the high energy sputtering of metals at elevated temperatures." Philosophical Magazine 11.110 (1965): 291-302.
[34]Birney, Ross, et al. "Amorphous silicon with extremely low absorption: beating thermal noise in gravitational astronomy." Physical review letters 121.19 (2018)
[35]黃柏豪, “以離子束濺鍍法鍍製奈米多層薄膜其光學特性之退火校應與離子束濺鍍法鍍製氮化矽薄膜之材料特性分析” , 國立清華大學碩士論文 (2019)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *