帳號:guest(18.222.110.69)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林長瑩
作者(外文):Lin, Chang-Ying
論文名稱(中文):應用於雙向光纖無線整合系統之偏振態無感及交叉干擾抑制的5G毫米波微型基地台
論文名稱(外文):Polarization Insensitive and Crosstalk-reduced 5G MMW Small Cell for Duplex Bidirectional Fiber-Wireless Integrated System.
指導教授(中文):馮開明
指導教授(外文):Feng, Kai-Ming
口試委員(中文):彭朋群
邱奕鵬
口試委員(外文):Peng, Peng Chun
Chiou, Yih-Peng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:107066533
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:65
中文關鍵詞:雙向光纖無線整合系統偏振態無感波長複用毫米波微型基地台序列干擾刪除
外文關鍵詞:Polarization Insensitive and Crosstalk-reduced 5G MMW Small Cell for Duplex Bidirectional Fiber-Wireless Integrated System.Polarization Insensitive and Crosstalk-reduced 5G MMW Small Cell for Duplex Bidirectional Fiber-Wireless Integrated System.Wavelength reuseMMW small cellsuccessive interference cancellation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:386
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
5G目前頻段可分為6GHz以下的Sub-6,以及高頻段毫米波(Millimeter Wave)兩種類型,毫米波的高頻段可以增強行動頻寬,但是傳輸損耗強,以後毫米波基地台尺寸較小,覆蓋範圍小,因此得靠布建更多基地台來解決,使毫米波微型基站的成本與複雜度成為一重要的議題。
在本論文中提出以偏振態多工(polarization division multiplexing, PDM)與波長複用(wavelength reuse)來實現一雙向的無偏振態追蹤光纖無線整合系統,
因為下行的資料量需求較大,所以使用了偏振態多工與28GHz的毫米波無線傳輸,偏振態多工可以在同樣的頻譜資源下傳遞兩倍的訊號,但是,解偏振態通常需要使用較複雜的技術,例如偏振態追蹤(polarization tracking)和多輸入多輸出(multi-input multi-output, MIMO)偏振態估計,前者需要適應性的偏振態追蹤系統,後者需要在兩偏振訊號上傳送訓練訊號,而且不是每個偏振態旋轉狀態都能把訊號解回來。基於實驗室之前的研究,使用光學濾波器來解偏振態多工,並使用類似序列干擾刪除(successive interference cancellation, SIC)的方法,降低系統對於光學濾波器的依賴性。
上行重新使用了下行的資源,透過使用了兩偏振態正交的光載波來達到偏振態無感的上傳機制,由於上行資料量需求較小,無線傳輸的部分使用了3.5GHz的頻段。實驗下行分別做了Back-to-back及25公里單模光纖還有3公尺的毫米波無線傳輸,而上行分別在Back-to-back及25公里單模光纖的情況下傳輸。透過
這樣的系統架構,使毫米波微型基地台降低了成本與複雜度,且符合5G的規格,讓此系統有機會應用在未來5G世代中。
5G frequency so far included sub-6 and millimeter wave. The transmission bandwidth can be enhanced due to the high frequency of millimeter wave. But it suffered from high transmission loss. In the future, MMW base station will have the characteristics of both small size and small coverage. Hence we need to construct more base station in this situation. It made the cost and complexity of MMW small call become an important issue.
In this paper, we proposal a full-duplex polarization tracking free fiber-wireless integrated system for 5G MMW small cell base on polarization division multiplexing and wavelength reuse. Owing to the high demand of down link data capacity, PDM and millimeter wave wireless transmission in 28GHz was used. PDM was able to transmit double data in the same frequency range. However, it’s require complicated technique to implement PDM demultiplexing. Such as polarization tracking and MIMO estimation, The former need adaptive loop-based polarization tracking system m and latter had to transmit training data on two polarization. In addition, it can not successful decode the data in any polarization status. Base on previous research, we implemented polarization demultiplexing by using optical filter. Furthermore, we used a DSP that was kind of like successive interference cancellation to reduce the system’s dependance on optical filter.
We reusing the resource of downlink for uplink optical modulation. Achieving a polarization insensitive system via using a set of orthogonal optical carriers. Because of lower demand for uplink data capacity. The uplink wireless transmission part used the 3.5GHz. In the downlink experiment, we implement B2B case、25km SMF case and 3m wireless transmission respectively. In addition, the upstream experiment was also demo in B2B case and 25km SMF case. The MMW small cell was able to reduce the complexity and cost through the system. Moreover, this bidirectional system was compatible with the 5G standard. It make the system get more opportunity to be applied in the future.
中文摘要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 4
1.3 論文架構 6
第二章 原理介紹 7
2.1 元件介紹 7
2.1.1 電光調變器-馬赫詹德調變器(Mach-Zehnder modulator, MZM) 7
2.1.2 光接收機(Photo detector, PD) 9
2.1.3 低雜訊放大器(Low noise amplifier, LNA) 11
2.1.3 混頻器(Mixer) 15
2.2正交分頻多工(ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING, OFDM)數位訊號的產生與接收 16
2.3 偏振態多工(POLARIZATION DIVISION MULTIPLEXING, PDM) 19
2.4 非正交多只技術(NON-ORTHOGNAL MULTIPLE ACCESS, NOMA)與序列干擾刪除(SUCCESSIVE INTERFERENCE CANCELLATION, SIC) 21
第三章 實驗想法與理論 25
3.1 光學濾波器解偏振態多工 25
3.2 應用於無偏態追蹤系統的SIC 28
3.2.1 消除相互干擾(Cross talk)想法與實現 28
3.2.2 通道與干擾程度估計 30
3.3 偏振態無感上傳機制原理 34
第四章 實驗架構與結果討論 38
4.1 雙向光纖無線整合系統機制 38
4.2 下行實驗架構與結果討論 42
4.2.1 Back-to-back與25公里單模光纖實驗架構與結果討論 42
4.2.2 毫米波無線傳輸實驗架構與結果討論 50
4.3 上行實驗架構與結果討論 53
4.3.1 Back-to-back與25公里單模光纖實驗架構 53
4.3.2 實驗結果討論 55
第五章 結論 60
參考文獻 61
[1]Anitha, Joshphin, 4G Mobile Communications - Emerging Technologies. International Journal of Multidisciplinary Approach and Studies, pp. 109 - 114.

[2] 3GPP Technical Report 38.913, Study on Scenarios and Requirements for Next Generation Access Technologies (Release 14), v14.2.0, 2017.

[3] ITU-R Rec. M.2083-0, IMT Vision - Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond, Sept. 2015

[4] E. Brown, Introduction on Optical Communication and Its Advantages.
https://medium.com/@echobrown1314/introduction-on-optical-communication-an
d-its-advantages-b74e01d6e181

[5] P. Pirinen, "A brief overview of 5G research activities," 1st International Conference on 5G for Ubiquitous Connectivity, 2014, pp. 17-22.

[6] E. Ezhilarasan and M. Dinakaran, "A Review on Mobile Technologies: 3G, 4G and 5G," 2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM), 2017, pp. 369-373.

[7] X. Cheng, Z. Fu, N. Lou, and Q. Li, "Power Iteration Based Training for Millimeter Wave MIMO Beamforming Systems," 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), 15-18 May 2016, pp. 1-5.
[8] A. Sayeed and J. Brady, "Beamspace MIMO Channel Modeling and Measurement: Methodology and Results at 28GHz," 2016 IEEE Globecom Workshops (GC Wkshps), 4-8 Dec. 2016, pp. 1-6.

[9]O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, "Spatially Sparse Precoding in Millimeter Wave MIMO Systems," IEEE Transactions on Wireless Communications, 2014, pp. 1499-1513.

[10] A. A. Kalachikov and N. S. Shelkunov, "Performance Evaluation of the Detection Algorithms for MIMO Spatial Multiplexing Based on Analytical Wireless MIMO Channel Models," 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), 2-6 Oct. 2018, pp. 180-183.

[11]R. Kumar and R. Saxena, Performance analysis of MIMO-STBC systems with higher coding rate using adaptive semiblind channel estimation scheme, 2014, pp. 304901-304901.

[12]TSUBOI, Toshinori, TANIGUCHI, Tomohiro, Yokotani, Tetsuya. "Technical Features and Approaches on Optical Access Networks for Various Applications. " IEICE Transactions on Communications. 2017

[13]A. Delmade, D. Venkitesh and R. D. Koilpillai, "Performance comparison of optical fronthauling techniques for centralized radio access network,"2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), 2016, pp. 1-6.

[14] X. Steve Yao, L. Yan, B. Zhang, A. Willner, and J. Jiang, "All-optic scheme for automatic polarization division demultiplexing," Opt. Express 15, 2007, P7407-7414.

[15] L. Cheng et al., "8×200-Gbit/s polarization-division multiplexed CS-RZ-DQPSK transmission over 1200 km of SSMF," 2009 14th OptoElectronics and Communications Conference, 2009, pp. 1-2.

[16] Chia-Chien Wei, Chun-Ting Lin, and Chih-Yun Wang, "PMD tolerant direct-detection polarization division multiplexed OFDM systems with MIMO processing," Optics Express, 2012, pp. 7316-7322.

[17] Q. Yang, Y. Ma, and W. Shieh, "107 Gb/s Coherent Optical OFDM Reception Using Orthogonal Band Multiplexing," Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, 2008.

[18]S. Liu, J. Yan, C. Tseng and K. Feng, "Polarization-tracking-free PDM IF-over-fiber mobile fronthaul employing multiband DDO-OFDM,"2016 Conference on Lasers and Electro-Optics (CLEO), 2016, pp. 1-2.

[19] Arthur James Lowery, "Amplified-spontaneous noise limit of optical OFDM lightwave systems," Opt. Express, 2008.

[20]Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2004.

[21]蔣政儒. "OFDM指標式通道估測." https://ir.nctu.edu.tw/bitstream/11536/47090/5/362005.pdf (accessed.

[22]P. J. Winzer and R. J. Essiambre, " Advanced Optical Modulation Formats,"
Proceedings of the IEEE, vol. 94, 2006, pp.952-985.

[23]K. Yonggyoo, L. Hanlim, L. Jaehoon, H. Jaeho, T. W. Oh, and J. Jichai, " Chirp characteristics of 10-Gb/s electroabsorption modulator integrated DFB laser,"
IEEE Journal of Quantum Electronics, vol. 36, 2000, pp. 900-908.

[24]K. Yonggyoo, L. Hanlim, L. Jaehoon, H. Jaeho, T. W. Oh, and J. Jichai, "Polarization-Insensitive Remote Access Unit for Radio-Over-Fiber Mobile Fronthaul System by Reusing Polarization Orthogonal Light Waves," IEEE Photonics Journal, vol. 8, Feb. 2016, pp. 1-8.

[25] L. Lei, From Orthogonal to Non-orthogonal Multiple Access: Energy-and Spectrum-Efficient Resource Allocation, 2016.

[26] T. Ratnarajah. (2018). Non-Orthogonal Multiple Access (NOMA).
http://www.profratnarajah.org/noma-communication.html

[27]H. Al-Raweshidy and S. Komaki, Radio over fiber technologies for mobile communications networks, 2002.

[28]C. Lim et al., "Fiber-Wireless Networks and Subsystem Technologies," in Journal of Lightwave Technology, vol. 28, Feb.15, 2010. pp. 390-405.

[29]H. J. E. L. Schmuck, Comparison of optical millimeter-wave system concepts
with regard to chromatic dispersion, vol. 31, 1995. pp. 1848-1848.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *