|
1. F. Shimizu, "Frequency Broadening in Liquids by a Short Light Pulse," Physical Review Letters 19, 1097-1100 (1967). 2. R. R. Alfano and S. L. Shapiro, "Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses," Physical Review Letters 24, 592-594 (1970). 3. Q. Luo, S. Hosseini, B. Ferland, and S. Chin, "Backward time-resolved spectroscopy from filament induced by ultrafast intense laser pulses," Optics Communications 233, 411-416 (2004). 4. T. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002). 5. T. R. Schibli, O. Kuzucu, K. Jung-Won, E. P. Ippen, J. G. Fujimoto, F. X. Kaertner, V. Scheuer, and G. Angelow, "Toward single-cycle laser systems," IEEE Journal of Selected Topics in Quantum Electronics 9, 990-1001 (2003). 6. H. Takara, "Multiple Optical Carrier Generation from a Supercontinuum Source," Optics and Photonics News 13, 48-51 (2002). 7. R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V. Shank, "Compression of optical pulses to six femtoseconds by using cubic phase compensation," Optics Letters 12, 483-485 (1987). 8. M. Ferray, A. L'Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, "Multiple-harmonic conversion of 1064 nm radiation in rare gases," Journal of Physics B: Atomic, Molecular and Optical Physics 21, L31-L35 (1988). 9. F. Meyer, N. Hekmat, T. Vogel, A. Omar, S. Mansourzadeh, F. Fobbe, M. Hoffmann, Y. Wang, and C. J. Saraceno, "Milliwatt-class broadband THz source driven by a 112 W, sub-100 fs thin-disk laser," Optics Express 27, 30340-30349 (2019). 10. V. Malka, S. Fritzler, E. Lefebvre, M. M. Aleonard, F. Burgy, J. P. Chambaret, J. F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J. P. Rousseau, J. N. Scheurer, B. Walton, and A. E. Dangor, "Electron Acceleration by a Wake Field Forced by an Intense Ultrashort Laser Pulse," Science 298, 1596 (2002). 11. K. W. D. Ledingham, P. McKenna, and R. P. Singhal, "Applications for Nuclear Phenomena Generated by Ultra-Intense Lasers," Science 300, 1107 (2003). 12. M. Müller, C. Aleshire, A. Klenke, E. Haddad, F. Légaré, A. Tünnermann, and J. Limpert, "10.4 kW coherently combined ultrafast fiber laser," Optics Letters 45, 3083-3086 (2020). 13. G. Jargot, N. Daher, L. Lavenu, X. Delen, N. Forget, M. Hanna, and P. Georges, "Self-compression in a multipass cell," Optics Letters 43, 5643-5646 (2018). 14. S. Gröbmeyer, K. Fritsch, B. Schneider, M. Poetzlberger, V. Pervak, J. Brons, and O. Pronin, "Self-compression at 1 µm wavelength in all-bulk multi-pass geometry," Applied Physics B 126, 159 (2020). 15. J. C. Travers, T. F. Grigorova, C. Brahms, and F. Belli, "High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres," Nature Photonics 13, 547-554 (2019). 16. G. Askaryan, "Effect of the gradient of a strong electromagnetic ray on electrons and atoms," Journal of Experimental and Theoretical Physics 15, 1088–1090 (1962). 17. P. L. Kelley, "Self-Focusing of Optical Beams," Physical Review Letters 15, 1005-1008 (1965). 18. N. Pilipetskii and A. Rustamov, "Observation of self-focusing of light in liquids," Journal of Experimental and Theoretical Physics Letters 2, 55-56 (1965). 19. R. W. Boyd, "Chapter 7 - Processes Resulting from the Intensity-Dependent Refractive Index," in Nonlinear Optics (Third Edition), R. W. Boyd, ed. (Academic Press, Burlington, 2008), pp. 329-390. 20. V. Magni, G. Cerullo, and S. De Silvestri, "ABCD matrix analysis of propagation of gaussian beams through Kerr media," Optics Communications 96, 348-355 (1993). 21. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, "Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation," Applied Physics B 79, 673-677 (2004). 22. A. Couairon and A. Mysyrowicz, "Femtosecond filamentation in transparent media," Physics Reports 441, 47-189 (2007). 23. T. Nagy, P. Simon, and L. Veisz, "High-energy few-cycle pulses: post-compression techniques," Advances in Physics: X 6, 1845795 (2021). 24. C. Rolland and P. B. Corkum, "Compression of high-power optical pulses," Journal of the Optical Society of America B 5, 641-647 (1988). 25. N. Milosevic, G. Tempea, and T. Brabec, "Optical pulse compression: bulk media versus hollow waveguides," Optics Letters 25, 672-674 (2000). 26. G. P. Agrawal, "Chapter 5 - Optical Solitons," in Nonlinear Fiber Optics (Fifth Edition), G. Agrawal, ed. (Academic Press, Boston, 2013), pp. 129-191. 27. C.-H. Lu, Y.-J. Tsou, H.-Y. Chen, B.-H. Chen, Y.-C. Cheng, S.-D. Yang, M.-C. Chen, C.-C. Hsu, and A. H. Kung, "Generation of intense supercontinuum in condensed media," Optica 1, 400-406 (2014). 28. C.-L. Tsai, F. Meyer, A. Omar, Y. Wang, A.-Y. Liang, C.-H. Lu, M. Hoffmann, S.-D. Yang, and C. J. Saraceno, "Efficient nonlinear compression of a mode-locked thin-disk oscillator to 27 fs at 98 W average power," Optics Letters 44, 4115-4118 (2019). 29. S. Zhang, Z. Fu, B. Zhu, G. Fan, S. Wang, Y. Chen, Y. Liu, A. Baltuska, C. Tian, and Z. Tao, "Solitary beam propagation in a nonlinear optical resonator enables high-efficiency pulse compression and mode self-cleaning," (2020), p. arXiv:2006.15810. 30. C. Robert, "Simple, stable, and compact multiple-reflection optical cell for very long optical paths," Applied Optics 46, 5408-5418 (2007). 31. D. R. Herriott and H. J. Schulte, "Folded Optical Delay Lines," Applied Optics 4, 883-889 (1965). 32. M. Hanna, X. Délen, L. Lavenu, F. Guichard, Y. Zaouter, F. Druon, and P. Georges, "Nonlinear temporal compression in multipass cells: theory," Journal of the Optical Society of America B 34, 1340-1347 (2017). 33. Á. Börzsönyi, Z. Heiner, A. P. Kovács, M. P. Kalashnikov, and K. Osvay, "Measurement of pressure dependent nonlinear refractive index of inert gases," Optics Express 18, 25847-25854 (2010). 34. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, "Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses," Journal of the Optical Society of America B 14, 650-660 (1997). 35. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, "Measurement of high order Kerr refractive index of major air components," Optics Express 17, 13429-13434 (2009). 36. J. Bernhardt, P. T. Simard, W. Liu, H. L. Xu, F. Théberge, A. Azarm, J. F. Daigle, and S. L. Chin, "Critical power for self-focussing of a femtosecond laser pulse in helium," Optics Communications 281, 2248-2251 (2008). 37. D. P. Shelton and J. E. Rice, "Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase," Chemical Reviews 94, 3-29 (1994). 38. A. Couairon, H. S. Chakraborty, and M. B. Gaarde, "From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases," Physical Review A 77, 053814 (2008). 39. H. J. Lehmeier, W. Leupacher, and A. Penzkofer, "Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation," Optics Communications 56, 67-72 (1985). 40. J. Schulte, T. Sartorius, J. Weitenberg, A. Vernaleken, and P. Russbueldt, "Nonlinear pulse compression in a multi-pass cell," Opt Lett 41, 4511-4514 (2016). 41. J. Weitenberg, A. Vernaleken, J. Schulte, A. Ozawa, T. Sartorius, V. Pervak, H.-D. Hoffmann, T. Udem, P. Russbüldt, and T. W. Hänsch, "Multi-pass-cell-based nonlinear pulse compression to 115 fs at 7.5 μJ pulse energy and 300 W average power," Optics Express 25, 20502-20510 (2017). 42. M. Kaumanns, V. Pervak, D. Kormin, V. Leshchenko, A. Kessel, M. Ueffing, Y. Chen, and T. Nubbemeyer, "Multipass spectral broadening of 18 mJ pulses compressible from 1.3 ps to 41 fs," Optics Letters 43, 5877-5880 (2018). 43. P. Russbueldt, J. Weitenberg, J. Schulte, R. Meyer, C. Meinhardt, H. D. Hoffmann, and R. Poprawe, "Scalable 30 fs laser source with 530 W average power," Optics Letters 44, 5222-5225 (2019). 44. M. D. Perry, O. L. Landen, A. Szöke, and E. M. Campbell, "Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser," Physical Review A 37, 747-760 (1988). 45. M. V. Ammosov, N. B. Delone, and V. Krainov, "Tunnel ionization of complex atoms and of atomic ions in an alternating electric field," Sov. Phys. JETP 64, 1191 (1986). 46. "Lasers and laser-related equipment-test methods for laser beam widths, divergence angles and beam propagation ratios" (ISO, 2005), 11146. 47. A. E. Siegman, "How to (Maybe) Measure Laser Beam Quality," in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues, OSA Trends in Optics and Photonics (Optical Society of America, 1998), MQ1. 48. G. G. Luther, A. C. Newell, J. V. Moloney, and E. M. Wright, "Short-pulse conical emission and spectral broadening in normally dispersive media," Optics Letters 19, 789-791 (1994). 49. "Ultrafast Nonlinear Optics: Third Order," in Ultrafast Optics (2009), pp. 258-315. 50. C. M. Heyl, C. L. Arnold, A. Couairon, and A. L’Huillier, "Introduction to macroscopic power scaling principles for high-order harmonic generation," Journal of Physics B: Atomic, Molecular and Optical Physics 50, 013001 (2016). 51. C.-L. Tsai, Y.-H. Tseng, A.-Y. Liang, M.-W. Lin, S.-D. Yang, and M.-C. Chen, "Nonlinear Compression of Intense Optical Pulses at 1.55 μm by Multiple Plate Continuum Generation," Journal of Lightwave Technology 37, 5100-5107 (2019). 52. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator," IEEE Journal of Quantum Electronics 28, 908-920 (1992).
|