帳號:guest(18.218.119.28)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張芝翠
作者(外文):Chang,Chih-Tsui
論文名稱(中文):在矽-氮化矽複合波導實現可調式慢光
論文名稱(外文):Implementation of Tunable Slow-Light on Si-Si3N4 Composite Waveguide
指導教授(中文):李明昌
指導教授(外文):Lee, Ming-Chang
口試委員(中文):施閔雄
邱華恭
口試委員(外文):Shih, Min-Hsiung
Chiu, Hua-Kung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:107066526
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:113
中文關鍵詞:矽光子光子晶體氮化矽慢光波導
外文關鍵詞:Silicon PhotonicsPhotonics crystalsSi3N4Slow-lightwaveguide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:271
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文主要是利用矽-氮化矽複合波導結構,結合一維光子晶體慢光波導,透過加熱改變元件整體等效折射率,實現可調式慢光波導。
氮化矽材料本身折射率較小,作為波導結構時與包覆層材料二氧化矽的相對折射率較小,因模態侷限在波導中傳遞時分布較大,受到波導邊緣粗糙度的影響較小而降低了傳播損耗,結合矽材料本身與現今半導體製程相容、可作為高速元件材料等特性,作為矽 -氮化矽複合波導結構,可以實現高速元件、被動元件、電晶片製程上整合的最大優勢 。
慢光波導設計首先利用平面波展開法計算能帶結構,設計慢光波導結構參數調整操作區域,再利用有限時域差分法模擬慢光波導穿透頻譜,估算損耗,最後利用干涉架構推出波導群折射率。
在量測結果中我們成功量測到相同溫度下,慢光群折射率可以從2.73調變至 9.57 隨溫度變化於30˚C至 50˚C之間群折射率從8.4調變至14.54,而穿透率隨溫度變化從 58%損耗至10%;若穿透率固定在41%,群折射率從7.69調變至 12.16。
This study designs an one-dimensional photonic crystal slow-light structure based on the Si-Si3N4 composite waveguide and tunes the effective refractive index of slow-light waveguide by heating to achieve a tunable slow-light waveguide.
Compare with silicon, the refractive index of silicon nitride is smaller, when being used as waveguide material, the refractive index difference beteween core and cladding is relatively small. Since the mode extends to out of the core, it is less affected by the roughness of sidewall of the waveguide, resulting in lower propagation loss. Combined with the silicon, which is compatible with semiconductor process technology, and with the high thermal-optic effect, it is mostly used as the material of high-speed device. As a silicon-silicon nitride composite waveguide structure, it can realize lossless integration with high-speed device, passive device, and electronic integration circuit.
For the design of slow-light waveguide, the operation wavelength is first adjusted according to band structure, which is obtained by plane wave expansion method calculation. Then, the finite time domain difference method is implemented to simulate the slow-light waveguide transmission spectrum and estimate the loss. Finally, unbalanced Mach-Zehnder Interferometer is used to calculate the waveguide group refractive index.
This study experimentally demonstrate a tunable slow-light waveguide, and the group index is tuned from 2.73 to 9.57 by scan wavelength. Heating result in the group index is tuned from 8.4 to 14.54, while the transmittance varies from 58% to 10%. If the transmittance is fixed at 41%, the group refractive index is tuned from 7.69 to 12.16.
摘要 1
Abstract 2
致謝 3
目錄 8
圖目錄 10
第一章 緒論 15
1.1 矽光子通訊及光子晶體簡介 15
1.2 慢光文獻回顧 20
1.3 研究動機 32
1.4 論文架構 33
第二章 理論背景介紹 34
2.1 倒晶格與布里淵區 34
2.2 布洛赫波與能帶結構 38
2.3 平面波展開法 43
2.4 波導原理 47
第三章 慢光波導元件模擬與設計 60
3.1 慢光波導結構介紹 60
3.2 模擬流程圖及模擬設定 63
3.3 慢光模擬結果分析 73
3.4 溫度對慢光效果影響溫度對慢光效果響 80
3.5 厚度對慢光效果影響厚度對慢光效果影響 83
第四章 量測與分析量測與分析 86
4.1 量測規劃與架設量測規劃與架設 86
4.2 慢光波導分析慢光波導分析 103
第五章 結論與未來工作結論與未來工作 109
5.1 結論 109
5.2 未來改善方向 110
第六章 參考文獻 112
1. Jafari, O., et al., Mode-conversion-based silicon photonic modulator loaded by a combination of lateral and interleaved p-n junctions. Photonics Research, 2021. 9(4): p. 471-476.
2. Kondo, K., et al., Fan-beam steering device using a photonic crystal slow-light waveguide with surface diffraction grating. Optics Letters, 2017. 42(23): p. 4990-4993.
3. Yablonovitch, E., Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 1987. 58(20): p. 2059-2062.
4. John, S., Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987. 58(23): p. 2486-2489.
5. Notomi, M., et al., Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Physical Review Letters, 2001. 87(25): p. 4.
6. Faggiani, R., et al., Implementing structural slow light on short length scales: the photonic speed bump. Optica, 2017. 4(4): p. 393-399.
7. Boller, K.-J., A. Imamoğlu, and S.E.J.P.R.L. Harris, Observation of electromagnetically induced transparency. 1991. 66(20): p. 2593.
8. 陳應誠 and 余怡德 , 光速減慢至每秒 600 公尺 —原子的電磁
波引發透明效應 . 2001, 物理雙月刊 .
9. Hau, L.V., et al., Light speed reduction to 17 metres per second in an ultracold atomic gas. 1999. 397(6720): p. 594-598.
10. Vlasov, Y.A., et al., Active control of slow light on a chip with photonic crystal waveguides. 2005. 438(7064): p. 65-69.
11. Bao, C., et al., Flat band slow light with high coupling efficiency in one-dimensional grating waveguides. 2011. 24(1): p. 7-9.
12. Qin, K., et al., Slow light Mach–Zehnder interferometer as label-free biosensor with scalable sensitivity. 2016. 41(4): p. 753-756.
13. Gervais, A., et al. Tunable Slow-Light in Silicon Photonic Subwavelength Grating Waveguides. in 2019 IEEE 16th International Conference on Group IV Photonics (GFP). 2019. IEEE.
113
14. Ma, Y.M., et al., Mid-Infrared Slow Light Engineering and Tuning in 1-D Grating Waveguide. Ieee Journal of Selected Topics in Quantum Electronics, 2018. 24(6): p. 8.
15. Zhao, X.J., et al., Efficient coupling into slow-light one-dimensional fishbone waveguide by mode converter method. Applied Physics Express, 2017. 10(7): p. 4.
16. Hao, R., et al., Increasing the bandwidth of slow light in fishbone-like grating waveguides. Photonics Research, 2019. 7(2): p. 240-245.
17. Kim, K. and T.E. Murphy, Porous silicon integrated Mach-Zehnder interferometer waveguide for biological and chemical sensing. Optics Express, 2013. 21(17): p. 19488-19497.
18. Moore, L.J.L., Single Mode Fiber Coupling: Sensitivities and Tolerancing. 2006. 1(4.5): p. 0.20.
19. Elshaari, A.W., et al., Thermo-Optic Characterization of Silicon Nitride Resonators for Cryogenic Photonic Circuits. 2016. 8: p. 1-9.
20. Watanabe, H., N. Yamada, and M.J.I.j.o.t. Okaji, Linear thermal expansion coefficient of silicon from 293 to 1000 K. 2004. 25(1): p. 221-236.
21. Ooi, K., et al. High gain optical parametric amplification in ultra-silicon-rich nitride (USRN) waveguides. in Nonlinear Optics and its Applications 2018. 2018. International Society for Optics and Photonics.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *