|
1. Jafari, O., et al., Mode-conversion-based silicon photonic modulator loaded by a combination of lateral and interleaved p-n junctions. Photonics Research, 2021. 9(4): p. 471-476. 2. Kondo, K., et al., Fan-beam steering device using a photonic crystal slow-light waveguide with surface diffraction grating. Optics Letters, 2017. 42(23): p. 4990-4993. 3. Yablonovitch, E., Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 1987. 58(20): p. 2059-2062. 4. John, S., Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987. 58(23): p. 2486-2489. 5. Notomi, M., et al., Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Physical Review Letters, 2001. 87(25): p. 4. 6. Faggiani, R., et al., Implementing structural slow light on short length scales: the photonic speed bump. Optica, 2017. 4(4): p. 393-399. 7. Boller, K.-J., A. Imamoğlu, and S.E.J.P.R.L. Harris, Observation of electromagnetically induced transparency. 1991. 66(20): p. 2593. 8. 陳應誠 and 余怡德 , 光速減慢至每秒 600 公尺 —原子的電磁 波引發透明效應 . 2001, 物理雙月刊 . 9. Hau, L.V., et al., Light speed reduction to 17 metres per second in an ultracold atomic gas. 1999. 397(6720): p. 594-598. 10. Vlasov, Y.A., et al., Active control of slow light on a chip with photonic crystal waveguides. 2005. 438(7064): p. 65-69. 11. Bao, C., et al., Flat band slow light with high coupling efficiency in one-dimensional grating waveguides. 2011. 24(1): p. 7-9. 12. Qin, K., et al., Slow light Mach–Zehnder interferometer as label-free biosensor with scalable sensitivity. 2016. 41(4): p. 753-756. 13. Gervais, A., et al. Tunable Slow-Light in Silicon Photonic Subwavelength Grating Waveguides. in 2019 IEEE 16th International Conference on Group IV Photonics (GFP). 2019. IEEE. 113 14. Ma, Y.M., et al., Mid-Infrared Slow Light Engineering and Tuning in 1-D Grating Waveguide. Ieee Journal of Selected Topics in Quantum Electronics, 2018. 24(6): p. 8. 15. Zhao, X.J., et al., Efficient coupling into slow-light one-dimensional fishbone waveguide by mode converter method. Applied Physics Express, 2017. 10(7): p. 4. 16. Hao, R., et al., Increasing the bandwidth of slow light in fishbone-like grating waveguides. Photonics Research, 2019. 7(2): p. 240-245. 17. Kim, K. and T.E. Murphy, Porous silicon integrated Mach-Zehnder interferometer waveguide for biological and chemical sensing. Optics Express, 2013. 21(17): p. 19488-19497. 18. Moore, L.J.L., Single Mode Fiber Coupling: Sensitivities and Tolerancing. 2006. 1(4.5): p. 0.20. 19. Elshaari, A.W., et al., Thermo-Optic Characterization of Silicon Nitride Resonators for Cryogenic Photonic Circuits. 2016. 8: p. 1-9. 20. Watanabe, H., N. Yamada, and M.J.I.j.o.t. Okaji, Linear thermal expansion coefficient of silicon from 293 to 1000 K. 2004. 25(1): p. 221-236. 21. Ooi, K., et al. High gain optical parametric amplification in ultra-silicon-rich nitride (USRN) waveguides. in Nonlinear Optics and its Applications 2018. 2018. International Society for Optics and Photonics. |