|
[1] Xie, J. Y., et al. (2014). "Seven-bit reconfigurable optical true time delay line based on silicon integration." Optics Express 22(19): 22707-22715. [2] Deng, K. L., et al. (1997). "A 1024-channel fast tunable delay line for ultrafast all-optical TDM networks." Ieee Photonics Technology Letters 9(11): 1496-1498. [3] Moreira, R. L., et al. (2013). "Integrated Ultra-Low-Loss 4-Bit Tunable Delay for Broadband Phased Array Antenna Applications." Ieee Photonics Technology Letters 25(12): 1165-1168. [4] Chen, Z. L., et al. (2014). "Analysis of a Silicon Reconfigurable Feed-Forward Optical Delay Line." Ieee Photonics Journal 6(1): 11. [5] Rasras, M. S., et al. (2005). Integrated scalable continuously tunable variable optical delay lines (invited). 18th Annual Meeting of the IEEE-Lasers-and-Electro-Optical-Society, Sydney, AUSTRALIA, Ieee. [6] Wang, X. Y., et al. (2017). "Continuously tunable ultra-thin silicon waveguide optical delay line." Optica 4(5): 507-515. [7] Park, S., et al. (2010). "All-silicon and in-line integration of variable optical attenuators and photodetectors based on submicrometer rib waveguides." Optics Express 18(15): 15303-15310. [8] Yamada, K., et al. (2007). Applications of low-loss silicon photonic wire waveguides with carrier injection structures. 4th IEEE International Conference on Group IV Photonics, Tokyo, JAPAN, Ieee. [9] Dai, H., et al. (2013). "Design of thermo-optic variable optical attenuator based on quartz substrate." Optics and Photonics Journal 3(2): 158-161. [10] Park, S., et al. (2010). "Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides." Optics Express 18(11): 11282-11291. [11] Khatun, R., et al. (2015). Optimization of 2x2 MZI Electro-Optic Switch and Its Application as Logic Gate. 18th International Conference on Computer and Information Technology (ICCIT), Dhaka, BANGLADESH, Ieee. [12] Raghuwanshi, S. K., et al. (2013). "1× 4 signal router using three Mach-Zehnder interferometers." Optical Engineering 52(3): 035002. [13] Gao, Y., et al. (2019). "Thermo-Optic Mode Switch Based on an Asymmetric Mach-Zehnder Interferometer." Ieee Photonics Technology Letters 31(11): 861-864. [14] Zhang, M. R., et al. (2016). "Electro-optic mode switch based on lithium-niobate Mach-Zehnder interferometer." Applied Optics 55(16): 4418-4422. [15] Liang, T., et al. (2002). "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements." Applied Physics Letters 81(7): 1323-1325. [16] Pan, Z. Y., et al. (2015). Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing. Conference on Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VIII, San Francisco, CA, Spie-Int Soc Optical Engineering. [17] Moreira, R. L., et al. (2013). "Integrated Ultra-Low-Loss 4-Bit Tunable Delay for Broadband Phased Array Antenna Applications." Ieee Photonics Technology Letters 25(12): 1165-1168. [18] Melati, D., et al. (2018). "Wideband Integrated Optical Delay Line Based on a Continuously Tunable Mach-Zehnder Interferometer." Ieee Journal of Selected Topics in Quantum Electronics 24(1): 8. [19] Gutierrez, A. M., et al. (2012). "Method for measuring waveguide propagation losses by means of a Mach-Zehnder Interferometer structure." Optics Communications 285(6): 1144-1147. [20] Yang, D. H. and W. P. Lin (2015). "Phased-array beam steering using optical true time delay technique." Optics Communications 350: 90-96. [21] Zhang, L. H., et al. (2017). "Photonic true time delay beamforming technique with ultra-fast beam scanning." Optics Express 25(13): 14524-14532. [22] Lee, S. Y., et al. (2004). "Transformation between directional couplers and multi-mode interferometers based on ridge waveguides." Optics Express 12(14): 3079-3085.
|