帳號:guest(3.138.172.170)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):勞大耀
作者(外文):Lao, Da-Yao
論文名稱(中文):單晶矽PERC太陽能電池之背面鈍化堆疊層最佳退火參數之研究
論文名稱(外文):Study of Best Annealing Condition of Rear Side Passivation Stack Layer for Monocrystalline PERC Silicon Solar Cell
指導教授(中文):王立康
指導教授(外文):Wang, Li-Karn
口試委員(中文):甘炯耀
陳昇暉
口試委員(外文):Gan, Jon-Yiew
Chen, Sheng-Hui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:107066516
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:104
中文關鍵詞:太陽能電池單晶矽鈍化堆疊層
外文關鍵詞:Solar cellMonocrystallinePassivation stack layer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:47
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
背面鈍化堆疊層在PERC太陽能電池中扮演很重要的一個角色。Al2O3為一種同時兼具場效鈍化及化學鈍化的優異材料。本實驗將以氧化鋁作為鈍化層,並以氮化矽作為鈍化保護層覆蓋在鈍化層上方,兩種薄膜沉積後都會分別經過不同參數的退火,來找出使少數載子生命週期提升最大的參數。
本實驗使用電子束蒸鍍系統沉積一層鋁於背面,以臭氧氧化的方式將鋁氧化成氧化鋁。我們分別對蒸鍍厚度、氧化時間、退火溫度及退火時間做測試,找出蒸鍍3nm鋁、氧化20分鐘、700度退火60秒為最佳。藉由XPS量測可以得到Al2O3薄膜的元素組成,並以TEM量測知道Al2O3薄膜的厚度,再以C-V量測得到退火後鈍化層的負電荷密度。接著沉積氮化矽作為鈍化保護層後進行不同退火溫度及時間的二次退火,發現最佳退火溫度及時間為400度20分鐘,還能防止鈍化層衰退。最後以所有最佳參數製成之PERC太陽能電池達到最佳填充因子為76 %、轉換效率為17.093 %,比背部全面鋁的太陽能電池相比提升了0.329 %。
The rear side passivation stack layer plays an important role in PERC solar cells. Al2O3 is an excellent material with the features of both field-effect passivation and chemical passivation. In this experiment, aluminum oxide was first used as the passivation layer, and silicon nitride layer was used as the protection layer that covers the passivation layer. The two layers were annealed with different post deposition annealing conditions to find out the parameters that maximize the minority carrier lifetime.
In this experiment, an electron beam evaporation system was used to deposit a layer of aluminum on the back, and the aluminum was oxidized into aluminum oxide by ozone oxidation. We measured the minority carrier lifetime by varying deposition thickness, oxidation time, annealing temperature, and annealing time, and found that the best minority carrier lifetime occurred with the deposition of 3nm aluminum, 20 minutes of oxidation, and 60 seconds of annealing at 700 ℃. The elemental composition of the Al2O3 film was measured by XPS, and the thickness of the Al2O3 film was measured by TEM, and then the negative charge density of the passivation layer after annealing was measured by C-V measurement. Next, silicon nitride was deposited as a protection layer, and then were subjected to second annealing with different annealing temperatures and times. It was found that the optimal annealing temperature and time were 400 ℃ for 20 minutes, which can also prevent the passivation layer from degrading. Finally, the PERC solar cell made with all the best parameters achieves an optimal fill factor of 76 % and a conversion efficiency of 17.093 %, which is 0.329 % higher than that of Al-BSF.
目錄
第一章 序論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1太陽能電池發展 2
1.2.2鈍化層發展 7
1.3 研究動機 7
1.4 論文架構 8
第二章 原理介紹 9
2.1 半導體物理 9
2.1.1 半導體材料 9
2.1.2 晶體結構 10
2.1.3 半導體能帶與能隙 11
2.1.4 本質半導體與異質半導體 14
2.1.5 p-n接面 16
2.2. 太陽能電池原理 17
2.2.1 太陽輻射 17
2.2.2 太陽能電池基本運作原理 19
2.2.3 太陽能電池等效電路 20
2.2.4 太陽能電池電性參數 22
2.2.5 轉換效率的損失 24
2.2.6 量子效率 25
2.2.7 氧化層固定電荷量測 26
2.2.8 背面鈍化層 29
2.2.9 背表面場(Back Surface Field,BSF) 32
第三章 研究方法與製程步驟 34
3.1 實驗架構 34
3.2 儀器介紹 34
3.3 實驗步驟及元件架構 39
3.3.1 清洗處理(RCA clean) 41
3.3.2 表面粗糙化(Texturing) 42
3.3.3 磷擴散(Phosphorus diffusion) 42
3.3.4 背部拋光(Rear side polishing) 43
3.3.5 晶邊絕緣(Edge isolation) 43
3.3.6 磷玻璃去除(PSG removal) 43
3.3.7 蒸鍍鋁(E-gun Al) 44
3.3.8 臭氧氧化(O3 oxidation) 44
3.3.9 退火(Annealing) 44
3.3.10 背面氮化矽沉積(Rear side SiNx deposition) 44
3.3.11 二次退火(Second annealing) 45
3.3.12 黃光製程(Lithography) 45
3.3.13 正面氮化矽沉積(Front side SiNx deposition) 47
3.3.14 網印(Screen printing) 47
3.3.15 共燒結(Co-firing) 48
3.4 電容-電壓量測(C-V measurement) 49
第四章 實驗數據與分析 50
4.1 臭氧氧化金屬鋁製備氧化鋁薄膜之少數載子生命週期 50
4.1.1不同厚度蒸鍍鋁對於少數載子生命週期的影響 50
4.1.2 臭氧氧化金屬鋁不同時間的影響 54
4.1.3 臭氧氧化形成之鈍化層退火溫度及時間的比較 58
4.1.4 鈍化層衰退 74
4.2 背面氮化矽保護層退火研究 75
4.2.1 不同二次退火條件對氮化矽保護層少數載子生命週期之影響 75
4.2.2 氮化矽保護層對於衰退的影響 80
4.3 氧化鋁之元素組成分析 81
4.4 氧化鋁薄膜之TEM量測 83
4.5 固定電荷密度量測 87
4.6 反射率量測 89
4.7 元件轉換效率 90
4.8 SEM觀測 93
4.9 量子效率量測 96
第五章 結論 96
參考文獻 99

參考文獻
[1] “再生能源發電概況’’, 台灣電力公司, Retrieved from https://www.taipower.com.tw/tc/page.aspx?mid=204
[2] C.D. Mickey,“Solar photovoltaic cells’’, Journal of Chemical Education, vol.58, pp. 418-423, May 1981
[3] S.R. Wenham and M.A. Green,“Silicon solar cells’’, Progress in Photovoltaics: Research and Applications, vol.4, pp. 5,Dec. 1996
[4] D.M. Chapin, C.S. Fuller, and G.L. Pearson,“A new silicon p-n junction photocell for converting solar radiation into electrical power”, Journal of Applied Physics, vol. 25, pp. 676,Jan. 1954
[5] “太陽能分類’’, 國家能源科技人才培育計畫, Retrieved from https://sites.google.com/site/ensatptd/tai-yang-guang-dian-fa-dian
[6] H. Fritzsche,“Photo-induced structural changes associated with the Staebler-Wronski effect in hydrogenated amorphous silicon’’, Solid State Communications, vol. 94, pp. 953-955,Mar. 1995
[7] M. Gratzel,“Dye-sensitized solar cells’’, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 4, pp. 145-153,Jun. 2003
[8] J. Tsukamoto, H. Ohigashi, K. Matsumura,and A. Takahashi,“A Schottky-barrier type solar-cell using polyacetylene’’, Japanese Journal of Applied Physics, vol. 20, pp. 127-129,Feb. 1981
[9] M. Jeong, I.W. Choi,and E.M. Go,“Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss’’, Science, vol. 369, pp. 1615-1620,Sep. 2020
[10] A.W. Blakers, A. Wang, A.M. Milne, J. Zhao,and M.A Green,“22.8 % efficient silicon solar cell’’, Applied Physics Letters, vol. 55, pp. 1363-1365,Dec. 1989
[11] J. Zhao, A. Wang, and M.A. Green,“High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates’’, Solar Energy Materials and Solar Cells, vol. 65, pp. 429-435,Jan. 2001
[12] J. Zhao, A. Wang, and M.A. Green,“24% efficient PERL structure silicon solar cells’’, IEEE Conference on Photovoltaic Specialists, pp. 333-335,May 1990
[13] W.P. Mulligan,D.H. Rose, M.J. Cudzinovic, D.M. De Ceuster, K.R. McIntosh, D.D. Smith, and R.M. Swanson,“Manufacture of solar cells with 21% efficiency’’, SunPower Corporation, Retrieved from https://tayloredge.com/reference/Electronics/Photonics/HighEfficiencySolarCells.pdf
[14] M. Tanaka, M. Taguchi, T. Matsuyama1, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, and Y. Kuwano,“Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer) ’’, Japanese Journal of Applied Physics, vol. 31, pp. 3518-3512,Nov. 1992
[15] T. Takahama, M. Taguchi, E. Maruyama,and S. Okamoto,“Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell ’’, IEEE Journal of Photovoltaics, vol. 4, pp. 1433-1435,Nov. 2014
[16] J. Szlufcik,J. Majewski,A. Buczkowski,J. Radojewski,L. Jedral,E.B. Radojewska,“Screen-printed titanium dioxide anti-reflection coating for silicon solar cells’’, Solar Energy Materials,vol. 18, pp. 241-252,Jul. 1989
[17] M.A. Green,A.W. Blakers, J. Shi, E.M. Keller, and S.R. Wenham,“19.1% efficient silicon solar cell’’, Applied Physics Letters,vol. 44, pp. 1163-1164,Apr. 1984
[18] M. Kerr,J. Schmidt, and A. Cuevas,“Comparison of the open circuit voltage of simplified PERC cells passivated with PECVD silicon nitride and thermal silicon oxide’’, Progress in Photovoltaics: Research and Applications,vol. 8, pp. 529-536,Nov. 2000
[19] B. Vermang, F. Werner, W. Stals, and A. Lorenz ,“Spatially-separated atomic layer deposition of Al2O3, a new option for high-throughput si solar cell passivation’’, 37th IEEE Photovoltaic Specialists Conference,vol. 19,pp. 1144-1149,Feb. 2011
[20] S.M. Sze and M.K. Lee,“Semiconductor Devices Physics and Technology(3rd edition)’’, John Wiley & Sons, Inc., pp. 16
[21] “Optical coating”, University of Cambridge, Retrieved from https://www.doitpoms.ac.uk/tlplib/atomic-scale-structure/intro.php
[22] “半導體物理-固態量子理論導論”, Retrieved from http://120.101.8.4/lyhsu/post/..%5Cdatabase%5Cgrade%5C%E8%91%89%E6%98%87%E5%B9%B3%5Cchapter_3_EB_0311&0318.pdf
[23] T. India,“Insulators, Semi-conductors & Conductors”, Electronics Edx,
Retrieved from
https://electronicsedx.wordpress.com/2016/07/16/insulators-semi-conductors-conductors/
[24] A. Luque and S. Hegedus,“Handbook of Photovoltaic Science and Engineering”, John Wiley & Sons, Inc., pp. 71-72
[25] “半導體第三章”, Retrieved from
https://www.slideshare.net/cwtsenggg/ss-11198695
[26] S.M. Sze and M.K. Lee,“Semiconductor Devices Physics and Technology(3rd edition)’’, John Wiley & Sons, Inc., pp. 51
[27] S.M. Sze and M.K. Lee,“Semiconductor Devices Physics and Technology(3rd edition)’’, John Wiley & Sons, Inc., pp. 34
[28] “p–n junction”, Wikipedia, Retrieved from https://en.wikipedia.org/wiki/P%E2%80%93n_junction
[29] “大氣質量Air Mass (AM) ”, Enli Technology Company, Retrieved from
https://zh-tw.enlitechnology.com/show/air-mass-am1-5g-am1-5d-306249.htm
[30] K. de Croon “太陽能電池的基本原理及其結構”,Retrieved from https://slidesplayer.com/slide/15403059/
[31] J.P. Charles and M.A bdelkrim, “A practical method of analysis of the current-voltage characteristics of solar cells”, Solar Cells, vol. 4, pp. 169-178,Sep. 1981
[32] “太陽光模擬器基礎原理”, Enli Technology Company, Retrieved from https://www.enlitechnology.com/uploadfiles/402/product/SS-3A/Enli-Tech_%E4%B8%80%E4%B8%8B%E5%B0%B1%E6%87%82%EF%BC%81%E5%A4%AA%E9%99%BD%E5%85%89%E6%A8%A1%E6%93%AC%E5%99%A8%E5%8E%9F%E7%90%86%E7%B0%A1%E4%BB%8B.pdf
[33] B. Fischer, “ Loss analysis of crystalline silicon solar cells using photoconductance and quantum efficiency measurements”, Fachbereich Physik
,pp. 39
[34] D.L. Pulfrey, “MIS solar cells: a review”, IEEE Transactions on Electron Devices, vol. 25, pp. 1308-1317,Nov. 1978
[35] S.B. Chen and C.H. Lai, “High-density MIM capacitors using Al2O3 and AlTiOx dielectrics”,IEEE Electron Device Letters, vol. 23, pp. 185-187,May 2002
[36] S.M. Sze and M.K. Lee,“Semiconductor Devices Physics and Technology(3rd edition)’’, John Wiley & Sons, Inc., pp. 162
[37] S. Zhao,“Capacitance-frequency estimates of border-trap densities in multi-fin MOS capacitors’’, Vanderbilt University, Retrieved from https://ir.vanderbilt.edu/bitstream/handle/1803/14063/Zhao.pdf;jsessionid=002F92B50B5CFAEE12189278798DD062?sequence=1
[38] S. Joonwichien,S. Simayi,K. Shirasawa,K. Tanahashi, and H. Takato,“Thermal treatment effects on flat-band voltage shift in atomic-layer-deposited alumina or aluminum oxide/silicon nitride passivation stacks’’, Energy Procedia, vol. 92, pp. 353-358,Aug. 2016
[39] G. Dingemans, W. Beyer, M.C.M. van de Sanden, and W.M.M. Kessels,“Hydrogen induced passivation of Si interfaces by Al2O3 films and SiO2/Al2O3 stacks’’, Applied Physics Letters, vol. 97,Oct. 2010
[40] C.H. Hsu and C.W. Huang,“Efficiency improvement of PERC solar cell using an aluminum oxide passivation layer prepared via spatial atomic layer deposition and post-annealing’’, Surface and Coatings Technology, vol. 358, pp. 968-975,Jan. 2019
[41] B. Hoex, J.J.H. Gielis,M.C.M. van de Sanden, and W. M. M. Kessels,“On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3’’, Journal of Applied Physics, vol. 104,Dec. 2008
[42] J.G. Fossum,“Physical operation of back-surface-field silicon solar cells’’, IEEE Transactions on Electron Devices, vol. 24, pp. 322-325,Apr. 1977
[43] M.F. Pervez and M.N.H. Mia,“Influence of different metals back surface field on BSF silicon solar cell performance deposited by thermal evaporation method’’, Advances in Energy and Power ,vol. 5, pp. 27-31,Jul. 2017
[44] D. Chen and W. Deng,“Preventing the formation of voids in the rear local contact areas for industrial-type PERC solar cells’’, 28th European Photovoltaic Solar Energy Conference and Exhibition,Sep. 2013
[45] X. Wang,M. Juhl, and M. Abbott,“Use of QSSPC and QSSPL to monitor recombination Processes in p-type silicon solar cells’’, Energy Procedia, vol. 55, pp. 169-178,Mar. 2014
[46] “電子束蒸鍍系統”,台灣半導體研究中心, Retrieved from http://140.110.219.65/docs/devices/CF/T21_A.doc
[47] “電漿輔助化學氣相沉積系統”,台灣半導體研究中心, Retrieved from
http://140.110.219.65/docs/devices/CF/T19_A.pdf
[48] “Spin coater low-k 材料旋塗機”,台灣半導體研究中心, Retrieved from http://140.110.219.65/docs/devices/CF/T12_A.pdf
[49] “晶粒等級圖案定義對準系統”,台灣半導體研究中心, Retrieved from http://140.110.219.65/docs/devices/CF/L20_A.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *