|
Bauters, J. F., Heck, M. J., John, D. D., Tien, M.-C., Li, W., Barton, J. S., Blumenthal, D. J., Bowers, J. E., Leinse, A., & Heideman, R. G. (2011). Ultra-low-loss single-mode Si3N4 waveguides with 0.7 dB/m propagation loss. European Conference and Exposition on Optical Communications. [2]. Nguyen, T. A., & Lee, M.-C. M. (2020). Asymmetric dual-level grating coupler for coupling light to ultra-thin Si/Si 3 N 4 composite photonics. 2020 Opto-Electronics and Communications Conference (OECC), [3]. Lim, S. T., Gandhi, A., Png, C. E., Lu, D., Ang, N. S. S., Teo, E. J., & Teng, J. (2014). Ultra-thin low loss Si3N4 optical waveguides at 1310 nm. Physics and Simulation of Optoelectronic Devices XXII, [4]. Lee, M.-C. M. (2021). Ultra-thin Si-padded Si 3 N 4 waveguides for low-loss photonics. Optics Letters, 46(14), 3408-3411. [5]. Nguyen, T. A., & Lee, M.-C. M. (2020). Ultra-Thin Si/Si 3 N 4 Composite Waveguide for Low-Loss and High-Speed Photonic Integrated Circuits. 2020 Opto-Electronics and Communications Conference (OECC), [6]. Hadley, G. R. (1993). Design of tapered waveguides for improved output coupling. IEEE photonics technology letters, 5(9), 1068-1070.
[7]. Hatori, N., Shimizu, T., Okano, M., Ishizaka, M., Yamamoto, T., Urino, Y., Mori, M., Nakamura, T., & Arakawa, Y. (2014). A hybrid integrated light source on a silicon platform using a trident spot-size converter. Journal of Lightwave Technology, 32(7), 1329-1336. [8]. P Susthitha Menon a/p N V Visvanathan, Sahbudin Shaari.(2004). Development of silicon planar P-I-N photodiode. The 4th Annual Seminar of National Science Fellowship 2004 [9]. Liu, J.-M., Photonic Devices. 2005. [10]. Sze, S., & Gibbons, G. (1966). Avalanche breakdown voltages of abrupt and linearly graded p‐n junctions IN Ge, Si, GaAs, and GaP. Applied Physics Letters, 8(5), 111-113. [11]. McIntyre, R. (1966). Multiplication noise in uniform avalanche diodes. IEEE Transactions on Electron Devices(1), 164-168. [12]. Wu, W., Hawkins, A. R., & Bowers, J. E. (1996). Frequency response of avalanche photodetectors with separate absorption and multiplication layers. Journal of Lightwave Technology, 14(12), 2778-2785. [13]. Doylend, J., Jessop, P., & Knights, A. (2010). Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection. Optics express, 18(14), 14671-14678. [14]. Souhan, B., Grote, R. R., Driscoll, J. B., Lu, M., Stein, A., Bakhru, H., & Osgood, R. M. (2014). Metal-semiconductor-metal ion-implanted Si waveguide photodetectors for C-band operation. Optics express, 22(8), 9150-9158.
[15]. Geis, M., Spector, S., Grein, M., Schulein, R., Yoon, J., Lennon, D., Wynn, C., Palmacci, S., Gan, F., & Kärtner, F. (2007). All silicon infrared photodiodes: photo response and effects of processing temperature. Optics express, 15(25), 16886-16895. [16]. Zhu, H., Chen, X., Cai, J., & Wu, Z. (2009). 4H–SiC ultraviolet avalanche photodetectors with low breakdown voltage and high gain. Solid-state electronics, 53(1), 7-10. [17]. Guo, H., Yang, Y., Zhang, F., & Wen, Z. (2017). Design and fabrication of 4H-SiC Sam-APD ultraviolet photodetector. 2017 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS) [18]. Amorphous Silicon/Crystalline Silicon Separate Absorption Multiplication Avalanche Photodiode Chuang, W.-J. (2001). National Central University. [19]. Pipia, F., Votta, A., Obetti, G., Bellandi, E., Alessandri, M., & Nolan, T. (2008). AlCu metal line corrosion: a case study. Solid State Phenomena. [20]. Knights, A., Bradley, J., Gou, S., & Jessop, P. (2006). Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 24(3), 783-786.
[21]. Lien, M.-B., Liu, C.-H., Chun, I. Y., Ravishankar, S., Nien, H., Zhou, M., Fessler, J. A., Zhong, Z., & Norris, T. B. (2020). Ranging and light field imaging with transparent photodetectors. Nature Photonics, 14(3), 143-148.
[22]. Chang, R.-D., Ma, C.-C., & Tsai, J.-R. (2010). Dose loss of phosphorus due to interface segregation in silicon-on-insulator substrates. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 28(6), 1158-1163. [23]. Chang, R.-D., & Tsai, J.-R. (2013). Effect of implantation damage on transient loss of phosphorus in silicon. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 313, 1-4. [24]. Woodard, E. M., Manley, R. G., Fenger, G., Saxer, R. L., Hirschman, K. D., Dawson-Elli, D., & Couillard, J. G. (2006). Low Temperature Dopant Activation for Integrated Electronics Applications. 2006 16th Biennial University/Government/Industry Microelectronics Symposium.
|