帳號:guest(18.221.214.175)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉玟琳
作者(外文):Liu, Wun-Lin
論文名稱(中文):利用矽缺陷態開發矽與氮化矽混合波導光偵測器之研究
論文名稱(外文):Study of Trap-States-Mediated Si/Si3N4 Composite Waveguide Photodetectors
指導教授(中文):李明昌
指導教授(外文):LEE, MING-CHANG
口試委員(中文):王立康
徐世祥
口試委員(外文):WANG, LI-KARN
HSU, SHIH-HSIANG
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:107066515
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:77
中文關鍵詞:邊緣耦合器矽缺陷混合波導光偵測器雪崩光偵測器
外文關鍵詞:Edge CouplerDamage SiliconComposite Waveguide PhotodetectorsAvalanche Photodetector
相關次數:
  • 推薦推薦:0
  • 點閱點閱:75
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
矽材料的優勢在於一般光學通訊傳輸波長為1,310 nm 和 1,550 nm,矽本身對於這兩個波長都不會吸收,因此這兩個波段可以毫無阻礙地通過。然而光纖和矽波導之間的耦合傳輸損耗非常高,使得矽並非作為邊緣耦合器材料的首選。參考文獻[1-5],內容中提到在操作波長1310nm下厚度30nm矽波導與厚度220nm氮化矽波導所形成的混合波導傳播損耗相當低,其損耗約為0.055dB/cm。為求低傳播損耗、低耦合損耗我們最終使用單層氮化矽材料作為邊緣耦合器材料並利用混合波導進行傳播,融合矽光子平台製作高效能主動元件光偵測器。
主動元件Si+矽缺陷光偵測器通過矽離子佈值製造缺陷作為光偵測器的吸收層提升吸收效率以及光電轉換效率,另一種則是使用單晶矽作為吸收層材料。在外加逆偏壓20V的情況下,當進入到光偵測器的光功率為 0.00112W時,長度為500μm 的 Si+ 矽缺陷分離式吸收倍增雪崩光電探測器及單晶矽分離式吸收倍增雪崩光電探測器兩者產生的光電流分別為1.1e-5A以及9e-5A ,對應的響應度約為 0.01A/W和0.08A/W。
Recently, silicon photonics technology plays an important role in the large-scale photonic integrated circuits for many applications. Although Si waveguide makes signal transmit stably and efficiently between passive devices and active devices, the high loss between fiber and silicon waveguide becomes a serious problem for edge coupling. Si3N4 waveguides have been demonstrated with low propagation loss over a wide range of wavelengths for an ultra-thin Si3N4 waveguide and high coupling efficiency with fiber. Due to the above reasons, Si3N4 waveguide has been recommended for this ideal photonics platform.

Besides, active devices, photodetector in silicon photonics is hampered by the conflicting requirements for efficient optical-to-electrical conversion. Mid-band-gap defects via silicon-ion implantation are used as the absorption layer for increasing sensitivity to sub-band-gap light in this research. Different photodetectors will be inputted a 1310nm on-chip power by tunable laser to generate the photocurrent. Comparing with Si+ damaged silicon separated absorption multiplication avalanche photodetector and single crystal silicon separated absorption multiplication avalanche photodetector, we find out that under the same applied voltages (-20V) and input power (0.00112W), photocurrent to 1.1e-5 A and 9e-5 A, corresponding to a responsivity will be 0.01A/W and 0.08A/W。 Due to their potential for high performance, we can say that the devices described here are completely compatible with standard silicon processes.
摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 4
1.3論文架構 5
第二章 理論與背景 6
2.1 PIN光偵測器 6
2.2 分離式吸收倍增雪崩光偵測器 12
第三章 主動及被動元件設計 19
3.1 混合模態耦合器設計 20
3.2 PIN光偵測器元件設計 24
3.3 分離式吸收倍增雪崩光偵測器元件設計 30
第四章 元件製作 36
4.1 元件製作流程圖 36
4.2 元件製程說明 40
第五章 實驗量測架構及結果分析 55
5.1 光損耗量測架構 55
5.2 光偵測器之光電流與暗電流量測架構 59
5.3量測結果與分析 61
第六章 結論與未來展望 71
6.1 結論與未來展望 71
參考文獻 74
Bauters, J. F., Heck, M. J., John, D. D., Tien, M.-C., Li, W., Barton, J. S., Blumenthal, D. J., Bowers, J. E., Leinse, A., & Heideman, R. G. (2011). Ultra-low-loss single-mode Si3N4 waveguides with 0.7 dB/m propagation loss. European Conference and Exposition on Optical Communications.
[2]. Nguyen, T. A., & Lee, M.-C. M. (2020). Asymmetric dual-level grating coupler for coupling light to ultra-thin Si/Si 3 N 4 composite photonics. 2020 Opto-Electronics and Communications Conference (OECC),
[3]. Lim, S. T., Gandhi, A., Png, C. E., Lu, D., Ang, N. S. S., Teo, E. J., & Teng, J. (2014). Ultra-thin low loss Si3N4 optical waveguides at 1310 nm. Physics and Simulation of Optoelectronic Devices XXII,
[4]. Lee, M.-C. M. (2021). Ultra-thin Si-padded Si 3 N 4 waveguides for low-loss photonics. Optics Letters, 46(14), 3408-3411.
[5]. Nguyen, T. A., & Lee, M.-C. M. (2020). Ultra-Thin Si/Si 3 N 4 Composite Waveguide for Low-Loss and High-Speed Photonic Integrated Circuits. 2020 Opto-Electronics and Communications Conference (OECC),
[6]. Hadley, G. R. (1993). Design of tapered waveguides for improved output coupling. IEEE photonics technology letters, 5(9), 1068-1070.


[7]. Hatori, N., Shimizu, T., Okano, M., Ishizaka, M., Yamamoto, T., Urino, Y., Mori, M., Nakamura, T., & Arakawa, Y. (2014). A hybrid integrated light source on a silicon platform using a trident spot-size converter. Journal of Lightwave Technology, 32(7), 1329-1336.
[8]. P Susthitha Menon a/p N V Visvanathan, Sahbudin Shaari.(2004). Development of silicon planar P-I-N photodiode. The 4th Annual Seminar of National Science Fellowship 2004
[9]. Liu, J.-M., Photonic Devices. 2005.
[10]. Sze, S., & Gibbons, G. (1966). Avalanche breakdown voltages of abrupt and linearly graded p‐n junctions IN Ge, Si, GaAs, and GaP. Applied Physics Letters, 8(5), 111-113.
[11]. McIntyre, R. (1966). Multiplication noise in uniform avalanche diodes. IEEE Transactions on Electron Devices(1), 164-168.
[12]. Wu, W., Hawkins, A. R., & Bowers, J. E. (1996). Frequency response of avalanche photodetectors with separate absorption and multiplication layers. Journal of Lightwave Technology, 14(12), 2778-2785.
[13]. Doylend, J., Jessop, P., & Knights, A. (2010). Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection. Optics express, 18(14), 14671-14678.
[14]. Souhan, B., Grote, R. R., Driscoll, J. B., Lu, M., Stein, A., Bakhru, H., & Osgood, R. M. (2014). Metal-semiconductor-metal ion-implanted Si waveguide photodetectors for C-band operation. Optics express, 22(8), 9150-9158.

[15]. Geis, M., Spector, S., Grein, M., Schulein, R., Yoon, J., Lennon, D., Wynn, C., Palmacci, S., Gan, F., & Kärtner, F. (2007). All silicon infrared photodiodes: photo response and effects of processing temperature. Optics express, 15(25), 16886-16895.
[16]. Zhu, H., Chen, X., Cai, J., & Wu, Z. (2009). 4H–SiC ultraviolet avalanche photodetectors with low breakdown voltage and high gain. Solid-state electronics, 53(1), 7-10.
[17]. Guo, H., Yang, Y., Zhang, F., & Wen, Z. (2017). Design and fabrication of 4H-SiC Sam-APD ultraviolet photodetector. 2017 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS)
[18]. Amorphous Silicon/Crystalline Silicon Separate Absorption Multiplication Avalanche Photodiode Chuang, W.-J. (2001). National Central University.
[19]. Pipia, F., Votta, A., Obetti, G., Bellandi, E., Alessandri, M., & Nolan, T. (2008). AlCu metal line corrosion: a case study. Solid State Phenomena.
[20]. Knights, A., Bradley, J., Gou, S., & Jessop, P. (2006). Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 24(3), 783-786.



[21]. Lien, M.-B., Liu, C.-H., Chun, I. Y., Ravishankar, S., Nien, H., Zhou, M., Fessler, J. A., Zhong, Z., & Norris, T. B. (2020). Ranging and light field imaging with transparent photodetectors. Nature Photonics, 14(3), 143-148.

[22]. Chang, R.-D., Ma, C.-C., & Tsai, J.-R. (2010). Dose loss of phosphorus due to interface segregation in silicon-on-insulator substrates. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 28(6), 1158-1163.
[23]. Chang, R.-D., & Tsai, J.-R. (2013). Effect of implantation damage on transient loss of phosphorus in silicon. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 313, 1-4.
[24]. Woodard, E. M., Manley, R. G., Fenger, G., Saxer, R. L., Hirschman, K. D., Dawson-Elli, D., & Couillard, J. G. (2006). Low Temperature Dopant Activation for Integrated Electronics Applications. 2006 16th Biennial University/Government/Industry Microelectronics Symposium.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *