|
1. Caffey, D., et al., Recent results from broadly tunable external cavity quantum cascade lasers. SPIE OPTO. Vol. 7953. 2011: SPIE. 2. Wikipedia contributors, Infrared window, in Wikipedia, The Free Encyclopedia. 3. Huang, L., et al., Electric-Field Tunable Band Offsets in Black Phosphorus and MoS2 van der Waals p-n Heterostructure. The Journal of Physical Chemistry Letters, 2015. 6(13): p. 2483-2488. 4. Roy, K., et al., Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nature Nanotechnology, 2013. 8(11): p. 826-830. 5. Zhang, W., et al., Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Scientific Reports, 2014. 4(1): p. 3826. 6. Wan, X., et al., Controlled Electrochemical Deposition of Large-Area MoS2 on Graphene for High-Responsivity Photodetectors. Advanced Functional Materials, 2017. 27(19): p. 1603998. 7. Hoang, A.M., et al., Demonstration of high performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices. Applied Physics Letters, 2013. 102(1): p. 011108. 8. Hu, T., et al., Silicon photonic platforms for mid-infrared applications [Invited]. Photonics Research, 2017. 5(5): p. 417-430. 9. Tang, X., et al., Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nature Photonics, 2019. 13(4): p. 277-282. 10. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666. 11. Zhang, B.Y., et al., Broadband high photoresponse from pure monolayer graphene photodetector. Nature Communications, 2013. 4(1): p. 1811. 12. Kim, C.O., et al., High photoresponsivity in an all-graphene p–n vertical junction photodetector. Nature Communications, 2014. 5(1): p. 3249. 13. Chang, Y.-C., et al., Realization of mid-infrared graphene hyperbolic metamaterials. Nature Communications, 2016. 7(1): p. 10568. 14. Sun, Z., et al., Infrared Photodetectors Based on CVD-Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity. Advanced Materials, 2012. 24(43): p. 5878-5883. 15. Ni, Z., et al., Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors. ACS Nano, 2017. 11(10): p. 9854-9862. 16. Liang, Q., et al., High-Performance, Room Temperature, Ultra-Broadband Photodetectors Based on Air-Stable PdSe2. Advanced Materials, 2019. 31(24): p. 1807609. 17. Buscema, M., et al., Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nature Communications, 2014. 5(1): p. 4651. 18. Guo, Q., et al., Black Phosphorus Mid-Infrared Photodetectors with High Gain. Nano Letters, 2016. 16(7): p. 4648-4655. 19. Chen, X., et al., Widely tunable black phosphorus mid-infrared photodetector. Nature Communications, 2017. 8(1): p. 1672. 20. Chang, T.-Y., et al., Ultra-Broadband, High Speed, and High-Quantum-Efficiency Photodetectors Based on Black Phosphorus. ACS Applied Materials & Interfaces, 2020. 12(1): p. 1201-1209. 21. Chang, T.-Y., et al., Black Phosphorus Mid-Infrared Light-Emitting Diodes Integrated with Silicon Photonic Waveguides. Nano Letters, 2020. 20(9): p. 6824-6830. 22. Huang, M., et al., Broadband Black-Phosphorus Photodetectors with High Responsivity. Advanced Materials, 2016. 28(18): p. 3481-3485. 23. Kim, T.J., et al., Second window near-infrared dosimeter (NIR2D) system for radiation dosimetry. Physics in Medicine & Biology, 2020. 65(17): p. 175013. 24. Silicon photonic platforms for mid-infrared applications [Invited]. Photonics Research, 2017. 5(5): p. 417-430. 25. Xia, F., et al., Two-dimensional material nanophotonics. Nature Photonics, 2014. 8(12): p. 899-907. 26. Yao, J. and G. Yang, 2D material broadband photodetectors. Nanoscale, 2020. 12(2): p. 454-476. 27. Sangwan, V.K. and M.C. Hersam, Electronic Transport in Two-Dimensional Materials. Annual Review of Physical Chemistry, 2018. 69(1): p. 299-325. 28. Hu, C., X. Wang, and B. Song, High-performance position-sensitive detector based on the lateral photoelectrical effect of two-dimensional materials. Light: Science & Applications, 2020. 9(1): p. 88. 29. Lee, C.-H., et al., Atomically thin p–n junctions with van der Waals heterointerfaces. Nature Nanotechnology, 2014. 9(9): p. 676-681. 30. Freitag, M., et al., Photoconductivity of biased graphene. Nature Photonics, 2013. 7(1): p. 53-59. 31. Konstantatos, G., et al., Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotechnology, 2012. 7(6): p. 363-368. 32. Haddadi, A., et al., Bias–selectable nBn dual–band long–/very long–wavelength infrared photodetectors based on InAs/InAs1−xSbx/AlAs1−xSbx type–II superlattices. Scientific Reports, 2017. 7(1): p. 3379. 33. Novoselov, K.S., et al., 2D materials and van der Waals heterostructures. Science, 2016. 353(6298): p. aac9439. 34. Wang, L., et al., One-Dimensional Electrical Contact to a Two-Dimensional Material. Science, 2013. 342(6158): p. 614. 35. Castellanos-Gomez, A., et al., Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Materials, 2014. 1(1): p. 011002. 36. Chaves, A., et al., Bandgap engineering of two-dimensional semiconductor materials. npj 2D Materials and Applications, 2020. 4(1): p. 29. 37. Zhao, M., et al., Nb2SiTe4: A Stable Narrow-Gap Two-Dimensional Material with Ambipolar Transport and Mid-Infrared Response. ACS Nano, 2019. 13(9): p. 10705-10710. 38. Fang, W.-Y., et al., Nb2SiTe4 and Nb2GeTe4: Unexplored 2D Ternary Layered Tellurides with High Stability, Narrow Band Gap and High Electron Mobility. Journal of Electronic Materials, 2020. 49(2): p. 959-968. 39. Oyedele, A.D., et al., PdSe2: Pentagonal Two-Dimensional Layers with High Air Stability for Electronics. Journal of the American Chemical Society, 2017. 139(40): p. 14090-14097. 40. Sun, J., et al., Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Applied Physics Letters, 2015. 107(15): p. 153902. 41. Liu, B., et al., Black Arsenic–Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties. Advanced Materials, 2015. 27(30): p. 4423-4429. 42. Long, M., et al., Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Science Advances, 2017. 3(6): p. e1700589.
|