帳號:guest(3.145.57.201)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝志弘
作者(外文):Xie, Zhi-Hong
論文名稱(中文):金屬螺旋結構的光學掌性以及非晶三叉網絡的光學特性分析
論文名稱(外文):Chiroptical properties in metallic helix and analysis of amorphous tripod networks
指導教授(中文):洪毓玨
指導教授(外文):Hung, Yu-Chueh
口試委員(中文):何榮銘
蔣酉旺
口試委員(外文):Ho, Rong-Ming
Chiang, Yeo-Wan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:107066508
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:110
中文關鍵詞:光學掌性非晶三叉螺旋結構圓二色能隙
外文關鍵詞:chiropticalamorphoustripodhelixCDbandgap
相關次數:
  • 推薦推薦:0
  • 點閱點閱:182
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在論文的第一部分,我們利用有限時域差分法來數值分析各種光學反應,並著重探討螺旋結構的光學掌性,其中包含圓二色性質。我們建立一個系統模型來模擬不同材料、幾何參數和入射方向的圓二色效果。最終藉由合適的材料及幾何參數選擇來調整光學掌性的性質。此外也系統性探討電漿共振以及入射方向對圓二色性質的影響。

在論文的第二部分,主要探討非晶螺旋二十四面體網絡的光學性質。我們採用兩種不同的模型來建立此種網絡並呈現兩者的幾何特徵和能隙形成的關聯。並提出藉由亂度及幾何特徵來定義能隙性質的判斷標準,用來建立一個能隙地圖來對照能隙出現位置。結論上,這些模型能提供高反射非晶結構的設計方針並在光學應用上有重要意義。
In the first part of the study, we presented chiroptical properties of helix structures. We used FDTD method to numerically analyze various optical responses, including circular dichroism (CD). We constructed a model system to simulate the CD effect of helix structure and examined the optical responses based on different materials, geometrical parameters, and orientation. With proper choice of materials and geometric parameters, we showed that chiroptical responses can be tailored and manipulated. The plasmon resonances were also systematically analyzed and orientation-dependent CD effects were studied and discussed.
In the second part of the study, we presented the investigation on the optical properties for amorphous gyroid networks. We employed two models for constructing amorphous gyroid networks and showed that the correlation between geometric characteristics and bandgap formation. In addition, we proposed criteria for bandgap by the randomness and geometric characteristics. A gap map was constructed to examine the emergence of bandgaps with respect to geometric characteristics. Consequently, our models and results provide guidelines toward various designs of highly reflective amorphous structure, which may be of a great importance for optical applications.
致謝 2
摘要 3
Abstract 4
List of figure 9
Chapter 1 Introduction 17
1.1 Chiral plasmonics in metallic structure 17
1.2 Optical properties of amorphous structure 21
1.3 Motivations 24
Chapter 2 Methods 25
2.1 Analysis method of chirality and simulation setup 25
2.1.1 Chirality: FOM 25
2.1.2 Circular dichroism and g factor 28
2.1.3 Geometry of helix structure 29
2.1.4 Random orientation 30
2.2 Analysis method and model construction of tripod network 30
2.2.1 Bandstructure 30
2.2.1.1 Finite-Difference Time-Domain method (FDTD) 30
2.2.1.2 Plane Wave Expansion Method (PWEM) 32
2.2.1.3 Brillouin Zone 33
2.2.2 Reflectance spectra 34
2.2.3 Density of state (DOS) 35
2.2.4 Analysis for networks 36
2.2.4.1 Basic statistics 36
2.2.4.2 Similarities 38
2.2.4.3 Ring length 42
2.2.5 Amorphous structure generated by random relocation of vertices (RRV) 43
2.2.5.1 Vertices and edges in ordered gyroid 43
2.2.5.2 Random relocation of vertices 44
2.2.5.3 Periodic boundary condition 47
2.2.6 Amorphous structure generated by CRNs 48
2.2.6.1 Randomly generate vertices and edges 48
2.2.6.2 Simulated annealing 52
2.2.6.3 Stone-Wales defect and bond transposition 55
2.2.6.4 Keating potential 57
2.2.7 Reconnected RRV networks 59
Chapter 3 Chirality of metallic helix structure 60
3.1 Chiroptical properties with different materials 60
3.2 Chiroptical properties with different geometrical parameters of helix 62
3.2.1 Pitch length p 63
3.2.2 Helix radius R 65
3.2.3 Fiber radius r 67
3.2.4 Number of period n 69
3.3 Orientation dependence 71
3.4 Discussion 79
Chapter 4 Analysis of amorphous gyroid network 82
4.1 Bandgap analysis of amorphous structure generated by random relocation of vertices (RRV) 82
4.2 Bandgap analysis of amorphous structure generated by CRNs 88
4.3 Ring length effects on photonic bandgap 94
4.4 Photonic bandgap map and its improvement 100
Chapter 5 Conclusions 103
Bibliography 105
[1] M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, "Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures," Physical Review X, vol. 2, no. 3, p. 031010, 2012.
[2] T. Taniguchi, N. Miura, S. I. Nishimura, and K. Monde, "Vibrational circular dichroism: chiroptical analysis of biomolecules," Molecular Nutrition & Food Research, vol. 48, no. 4, pp. 246-254, 2004.
[3] Y. Zhou, Z. Zhu, W. Huang, W. Liu, S. Wu, X. Liu, Y. Gao, W. Zhang, and Z. Tang, "Optical coupling between chiral biomolecules and semiconductor nanoparticles: size‐dependent circular dichroism absorption," Angewandte Chemie International Edition, vol. 50, no. 48, pp. 11456-11459, 2011.
[4] W. Feng, J.-Y. Kim, X. Wang, H. A. Calcaterra, Z. Qu, L. Meshi, and N. A. Kotov, "Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors," Science Advances, vol. 3, no. 3, p. e1601159, 2017.
[5] S. Droulias and V. Yannopapas, "Broad-band giant circular dichroism in metamaterials of twisted chains of metallic nanoparticles," The Journal of Physical Chemistry C, vol. 117, no. 2, pp. 1130-1135, 2013.
[6] A. Shimizu, T. Mori, Y. Inoue, and S. Yamada, "Combined experimental and quantum chemical investigation of chiroptical properties of nicotinamide derivatives with and without intramolecular cation− π interactions," The Journal of Physical Chemistry A, vol. 113, no. 30, pp. 8754-8764, 2009.
[7] J. N. Wilson, W. Steffen, T. G. McKenzie, G. Lieser, M. Oda, D. Neher, and U. H. Bunz, "Chiroptical properties of poly (p-phenyleneethynylene) copolymers in thin films: large g-values," Journal of the American Chemical Society, vol. 124, no. 24, pp. 6830-6831, 2002.
[8] J. T. Yang and P. Doty, "The optical rotatory dispersion of polypeptides and proteins in relation to configuration1," Journal of the American Chemical Society, vol. 79, no. 4, pp. 761-775, 1957.
[9] T. Bruhn, A. Schaumlöffel, Y. Hemberger, and G. Bringmann, "SpecDis: Quantifying the comparison of calculated and experimental electronic circular dichroism spectra," Chirality, vol. 25, no. 4, pp. 243-249, 2013.
[10] S. A. Maier, Plasmonics: fundamentals and applications. Springer Science & Business Media, 2007.
[11] T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles," The Journal of Physical Chemistry B, vol. 104, no. 45, pp. 10549-10556, 2000.
[12] P. Polavarapu, "Ab initio vibrational Raman and Raman optical activity spectra," Journal of Physical Chemistry, vol. 94, no. 21, pp. 8106-8112, 1990.
[13] H. Fenniri, B.-L. Deng, and A. E. Ribbe, "Helical rosette nanotubes with tunable chiroptical properties," Journal of the American Chemical Society, vol. 124, no. 37, pp. 11064-11072, 2002.
[14] S. S. Oh and O. Hess, "Chiral metamaterials: enhancement and control of optical activity and circular dichroism," Nano Convergence, vol. 2, no. 1, p. 24, 2015.
[15] W. Gao, H. M. Leung, Y. Li, H. Chen, and W. Y. Tam, "Circular dichroism in double-layer metallic crossed-gratings," Journal of Optics, vol. 13, no. 11, p. 115101, 2011.
[16] D.-H. Kwon, P. L. Werner, and D. H. Werner, "Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation," Optics Express, vol. 16, no. 16, pp. 11802-11807, 2008.
[17] W. Kuhn, "The physical significance of optical rotatory power," Transactions of the Faraday Society, vol. 26, pp. 293-308, 1930.
[18] N. Berova, L. Di Bari, and G. Pescitelli, "Application of electronic circular dichroism in configurational and conformational analysis of organic compounds," Chemical Society Reviews, vol. 36, no. 6, pp. 914-931, 2007.
[19] Z. Fan and A. O. Govorov, "Plasmonic circular dichroism of chiral metal nanoparticle assemblies," Nano Letters, vol. 10, no. 7, pp. 2580-2587, 2010.
[20] J. Gibbs, A. Mark, S. Eslami, and P. Fischer, "Plasmonic nanohelix metamaterials with tailorable giant circular dichroism," Applied Physics Letters, vol. 103, no. 21, p. 213101, 2013.
[21] C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, "Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures," Nano Letters, vol. 13, no. 7, pp. 3256-3261, 2013.
[22] V. Yannopapas, "Circular dichroism in planar nonchiral plasmonic metamaterials," Optics Letters, vol. 34, no. 5, pp. 632-634, 2009.
[23] X. Wang and Z. Tang, "Circular dichroism studies on plasmonic nanostructures," Small, vol. 13, no. 1, p. 1601115, 2017.
[24] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment," The Journal of Physical Chemistry B, 2003.
[25] F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon resonances of a gold nanostar," Nano Letters, vol. 7, no. 3, pp. 729-732, 2007.
[26] A. García-Etxarri and J. A. Dionne, "Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas," Physical Review B, vol. 87, no. 23, p. 235409, 2013.
[27] J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, "Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends," Advanced Optical Materials, vol. 5, no. 16, p. 1700182, 2017.
[28] B. Dong, X. Liu, T. Zhan, L. Jiang, H. Yin, F. Liu, and J. Zi, "Structural coloration and photonic pseudogap in natural random close-packing photonic structures," Optics Express, vol. 18, pp. 14430-14438, 2010.
[29] B. Q. Dong, T. R. Zhan, X. H. Liu, L. P. Jiang, F. Liu, X. H. Hu, and J. Zi, "Optical response of a disordered bicontinuous macroporous structure in the longhorn beetle Sphingnotus mirabilis," Physical Review E, vol. 84, p. 11915, 2011.
[30] S. F. Liew, J.-K. Yang, H. Noh, C. F. Schreck, E. R. Dufresne, C. S. O’Hern, and H. Cao, "Photonic band gaps in three-dimensional network structures with short-range order," Physical Review A, vol. 84, 2011.
[31] M. Maldovan and E. L. Thomas, "Diamond-structured photonic crystals," Nature Materials, vol. 3, no. 9, p. 593, 2004.
[32] S. Imagawa and K. Edagawa, "Robustness and fragility of photonic bandgap in photonic amorphous diamond structures," Applied Physics A, vol. 123, no. 1, p. 41, 2017.
[33] K. Edagawa, S. Kanoko, and M. Notomi, "Photonic amorphous diamond structure with a 3D photonic band gap," Physical Review Letters, vol. 100, no. 1, p. 013901, 2008.
[34] V. Yannopapas, A. Modinos, and N. Stefanou, "Anderson localization of light in inverted opals," Physical Review B, vol. 68, no. 19, p. 193205, 2003.
[35] S. R. Sellers, W. Man, S. Sahba, and M. Florescu, "Local self-uniformity in photonic networks," Nature Communications, vol. 8, p. 14439, 2017.
[36] L. Shi, Y. Zhang, B. Dong, T. Zhan, X. Liu, and J. Zi, "Amorphous Photonic Crystals with Only Short‐Range Order," Advanced Materials, vol. 25, no. 37, pp. 5314-5320, 2013.
[37] H. Yin, B. Dong, X. Liu, T. Zhan, L. Shi, J. Zi, and E. Yablonovitch, "Amorphous diamond-structured photonic crystal in the feather barbs of the scarlet macaw," Proceedings of the National Academy of Sciences, vol. 109, no. 27, pp. 10798-10801, 2012.
[38] M. Decker, R. Zhao, C. Soukoulis, S. Linden, and M. Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity," Optics Letters, vol. 35, no. 10, pp. 1593-1595, 2010.
[39] S. Efrima, "Raman optical activity of molecules adsorbed on metal surfaces: theory," The Journal of Chemical Physics, vol. 83, no. 3, pp. 1356-1362, 1985.
[40] Z. Fan and A. O. Govorov, "Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism," The Journal of Physical Chemistry C, vol. 115, no. 27, pp. 13254-13261, 2011.
[41] H.-H. Jeong, A. G. Mark, M. Alarcón-Correa, I. Kim, P. Oswald, T.-C. Lee, and P. Fischer, "Dispersion and shape engineered plasmonic nanosensors," Nature Communications, vol. 7, p. 11331, 2016.
[42] G. Rikken and E. Raupach, "Pure and cascaded magnetochiral anisotropy in optical absorption," Physical Review E, vol. 58, no. 4, p. 5081, 1998.
[43] K. Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," presented at the IEEE Transactions on Antennas and Propagation, 1966.
[44] L. Brillouin, "Les électrons dans les métaux et le classement des ondes de de Broglie correspondantes," Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, vol. 191, p. 292, 1930.
[45] W. Luedtke and U. Landman, "Preparation, structure, dynamics, and energetics of amorphous silicon: A molecular-dynamics study," Physical Review B, vol. 40, no. 2, p. 1164, 1989.
[46] D. Franzblau, "Computation of ring statistics for network models of solids," Physical Review B, vol. 44, no. 10, p. 4925, 1991.
[47] R. M. Kaufmann, S. Khlebnikov, and B. W. Kaufmann, "The geometry of the double gyroid network: quantum and classical," Journal of Noncommutative Geometry, vol. 6, pp. 623-664, 2012.
[48] B. P. Cumming, M. D. Turner, G. E. Schroder-Turk, S. Debbarma, B. Luther-Davies, and M. Gu, "Adaptive optics enhanced direct laser writing of high refractive index gyroid photonic crystals in chalcogenide glass," Optics Express, vol. 22, pp. 689-698, 2014.
[49] G. T. Barkema and N. Mousseau, "High-quality continuous random networks," Physical Review B, vol. 62, pp. 4985-4990, 2000.
[50] C. S. O'Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, "Jamming at zero temperature and zero applied stress: the epitome of disorder," Physical Review E, vol. 68, p. 11306, 2003.
[51] G. J. Gao, J. Blawzdziewicz, and C. S. O'Hern, "Frequency distribution of mechanically stable disk packings," Physical Review E, vol. 74, p. 61304, 2006.
[52] C. R. Wronski, "Intrinsic and Light Induced Gap States in a-Si:H Materials and Solar Cells - Effects of Microstructure," Thin Solid Films, pp. 470-475, 2004.
[53] F. Wooten, K. Winer, and D. Weaire, "computer generation of structural models of amorphous Si and Ge," Physical Review Letters, vol. 54, pp. 1392-1395, 1985.
[54] R. Vink, G. Barkema, M. Stijnman, and R. Bisseling, "Device-size atomistic models of amorphous silicon," Physical Review B, vol. 64, no. 24, p. 245214, 2001.
[55] C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F.-J. Haug, S. Fan, C. Ballif, and Y. Cui, "High-Efficiency Amorphous Silicon Solar Cell on a Periodic Nanocone Back Reflector," Advanced Energy Materials, vol. 2, pp. 628-633, 2012.
[56] B. Hajek, "Optimization by simulated annealing: a necessary and sufficient condition for convergence," Lecture Notes-Monograph Series, pp. 417-427, 1986.
[57] A. J. Stone and D. J. Wales, "Theoretical studies of icosahedral C60 and some related structures," Chemical Physics Letters, vol. 128, pp. 501-503, 1986.
[58] E. Brayfindley, E. E. Irace, C. Castro, and W. L. Karney, "Stone–Wales Rearrangements in Polycyclic Aromatic Hydrocarbons: A Computational Study," The Journal of Organic Chemistry, vol. 80, no. 8, pp. 3825-3831, 2015.
[59] P. N. Keating, "Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure," Physical Review, vol. 145, p. 637, 1966.
[60] L. Genzel and T. Martin, "Infrared absorption by surface phonons and surface plasmons in small crystals," Surface Science, vol. 34, no. 1, pp. 33-49, 1973.
[61] A. Cox, A. J. DeWeerd, and J. Linden, "An experiment to measure Mie and Rayleigh total scattering cross sections," American Journal of Physics, vol. 70, no. 6, pp. 620-625, 2002.
[62] F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, "Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection," Physical Review Letters, vol. 101, no. 15, p. 157403, 2008.
[63] Y.-R. Li, R.-M. Ho, and Y.-C. Hung, "Plasmon hybridization and dipolar interaction on the resonances of helix metamaterials," IEEE Photonics Journal, vol. 5, no. 2, pp. 2700510-2700510, 2013.
[64] J. G. Gibbs, A. G. Mark, T.-C. Lee, S. Eslami, D. Schamel, and P. Fischer, "Nanohelices by shadow growth," Nanoscale, vol. 6, no. 16, pp. 9457-9466, 2014.
[65] A. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, and L. M. Liz-Marzán, "From individual to collective chirality in metal nanoparticles," Nano Today, vol. 6, no. 4, pp. 381-400, 2011.
[66] P. K. Jain, S. Eustis, and M. A. El-Sayed, "Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model," The Journal of Physical Chemistry B, vol. 110, no. 37, pp. 18243-18253, 2006.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *