|
[1] M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, "Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures," Physical Review X, vol. 2, no. 3, p. 031010, 2012. [2] T. Taniguchi, N. Miura, S. I. Nishimura, and K. Monde, "Vibrational circular dichroism: chiroptical analysis of biomolecules," Molecular Nutrition & Food Research, vol. 48, no. 4, pp. 246-254, 2004. [3] Y. Zhou, Z. Zhu, W. Huang, W. Liu, S. Wu, X. Liu, Y. Gao, W. Zhang, and Z. Tang, "Optical coupling between chiral biomolecules and semiconductor nanoparticles: size‐dependent circular dichroism absorption," Angewandte Chemie International Edition, vol. 50, no. 48, pp. 11456-11459, 2011. [4] W. Feng, J.-Y. Kim, X. Wang, H. A. Calcaterra, Z. Qu, L. Meshi, and N. A. Kotov, "Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors," Science Advances, vol. 3, no. 3, p. e1601159, 2017. [5] S. Droulias and V. Yannopapas, "Broad-band giant circular dichroism in metamaterials of twisted chains of metallic nanoparticles," The Journal of Physical Chemistry C, vol. 117, no. 2, pp. 1130-1135, 2013. [6] A. Shimizu, T. Mori, Y. Inoue, and S. Yamada, "Combined experimental and quantum chemical investigation of chiroptical properties of nicotinamide derivatives with and without intramolecular cation− π interactions," The Journal of Physical Chemistry A, vol. 113, no. 30, pp. 8754-8764, 2009. [7] J. N. Wilson, W. Steffen, T. G. McKenzie, G. Lieser, M. Oda, D. Neher, and U. H. Bunz, "Chiroptical properties of poly (p-phenyleneethynylene) copolymers in thin films: large g-values," Journal of the American Chemical Society, vol. 124, no. 24, pp. 6830-6831, 2002. [8] J. T. Yang and P. Doty, "The optical rotatory dispersion of polypeptides and proteins in relation to configuration1," Journal of the American Chemical Society, vol. 79, no. 4, pp. 761-775, 1957. [9] T. Bruhn, A. Schaumlöffel, Y. Hemberger, and G. Bringmann, "SpecDis: Quantifying the comparison of calculated and experimental electronic circular dichroism spectra," Chirality, vol. 25, no. 4, pp. 243-249, 2013. [10] S. A. Maier, Plasmonics: fundamentals and applications. Springer Science & Business Media, 2007. [11] T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles," The Journal of Physical Chemistry B, vol. 104, no. 45, pp. 10549-10556, 2000. [12] P. Polavarapu, "Ab initio vibrational Raman and Raman optical activity spectra," Journal of Physical Chemistry, vol. 94, no. 21, pp. 8106-8112, 1990. [13] H. Fenniri, B.-L. Deng, and A. E. Ribbe, "Helical rosette nanotubes with tunable chiroptical properties," Journal of the American Chemical Society, vol. 124, no. 37, pp. 11064-11072, 2002. [14] S. S. Oh and O. Hess, "Chiral metamaterials: enhancement and control of optical activity and circular dichroism," Nano Convergence, vol. 2, no. 1, p. 24, 2015. [15] W. Gao, H. M. Leung, Y. Li, H. Chen, and W. Y. Tam, "Circular dichroism in double-layer metallic crossed-gratings," Journal of Optics, vol. 13, no. 11, p. 115101, 2011. [16] D.-H. Kwon, P. L. Werner, and D. H. Werner, "Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation," Optics Express, vol. 16, no. 16, pp. 11802-11807, 2008. [17] W. Kuhn, "The physical significance of optical rotatory power," Transactions of the Faraday Society, vol. 26, pp. 293-308, 1930. [18] N. Berova, L. Di Bari, and G. Pescitelli, "Application of electronic circular dichroism in configurational and conformational analysis of organic compounds," Chemical Society Reviews, vol. 36, no. 6, pp. 914-931, 2007. [19] Z. Fan and A. O. Govorov, "Plasmonic circular dichroism of chiral metal nanoparticle assemblies," Nano Letters, vol. 10, no. 7, pp. 2580-2587, 2010. [20] J. Gibbs, A. Mark, S. Eslami, and P. Fischer, "Plasmonic nanohelix metamaterials with tailorable giant circular dichroism," Applied Physics Letters, vol. 103, no. 21, p. 213101, 2013. [21] C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, "Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures," Nano Letters, vol. 13, no. 7, pp. 3256-3261, 2013. [22] V. Yannopapas, "Circular dichroism in planar nonchiral plasmonic metamaterials," Optics Letters, vol. 34, no. 5, pp. 632-634, 2009. [23] X. Wang and Z. Tang, "Circular dichroism studies on plasmonic nanostructures," Small, vol. 13, no. 1, p. 1601115, 2017. [24] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment," The Journal of Physical Chemistry B, 2003. [25] F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon resonances of a gold nanostar," Nano Letters, vol. 7, no. 3, pp. 729-732, 2007. [26] A. García-Etxarri and J. A. Dionne, "Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas," Physical Review B, vol. 87, no. 23, p. 235409, 2013. [27] J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, "Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends," Advanced Optical Materials, vol. 5, no. 16, p. 1700182, 2017. [28] B. Dong, X. Liu, T. Zhan, L. Jiang, H. Yin, F. Liu, and J. Zi, "Structural coloration and photonic pseudogap in natural random close-packing photonic structures," Optics Express, vol. 18, pp. 14430-14438, 2010. [29] B. Q. Dong, T. R. Zhan, X. H. Liu, L. P. Jiang, F. Liu, X. H. Hu, and J. Zi, "Optical response of a disordered bicontinuous macroporous structure in the longhorn beetle Sphingnotus mirabilis," Physical Review E, vol. 84, p. 11915, 2011. [30] S. F. Liew, J.-K. Yang, H. Noh, C. F. Schreck, E. R. Dufresne, C. S. O’Hern, and H. Cao, "Photonic band gaps in three-dimensional network structures with short-range order," Physical Review A, vol. 84, 2011. [31] M. Maldovan and E. L. Thomas, "Diamond-structured photonic crystals," Nature Materials, vol. 3, no. 9, p. 593, 2004. [32] S. Imagawa and K. Edagawa, "Robustness and fragility of photonic bandgap in photonic amorphous diamond structures," Applied Physics A, vol. 123, no. 1, p. 41, 2017. [33] K. Edagawa, S. Kanoko, and M. Notomi, "Photonic amorphous diamond structure with a 3D photonic band gap," Physical Review Letters, vol. 100, no. 1, p. 013901, 2008. [34] V. Yannopapas, A. Modinos, and N. Stefanou, "Anderson localization of light in inverted opals," Physical Review B, vol. 68, no. 19, p. 193205, 2003. [35] S. R. Sellers, W. Man, S. Sahba, and M. Florescu, "Local self-uniformity in photonic networks," Nature Communications, vol. 8, p. 14439, 2017. [36] L. Shi, Y. Zhang, B. Dong, T. Zhan, X. Liu, and J. Zi, "Amorphous Photonic Crystals with Only Short‐Range Order," Advanced Materials, vol. 25, no. 37, pp. 5314-5320, 2013. [37] H. Yin, B. Dong, X. Liu, T. Zhan, L. Shi, J. Zi, and E. Yablonovitch, "Amorphous diamond-structured photonic crystal in the feather barbs of the scarlet macaw," Proceedings of the National Academy of Sciences, vol. 109, no. 27, pp. 10798-10801, 2012. [38] M. Decker, R. Zhao, C. Soukoulis, S. Linden, and M. Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity," Optics Letters, vol. 35, no. 10, pp. 1593-1595, 2010. [39] S. Efrima, "Raman optical activity of molecules adsorbed on metal surfaces: theory," The Journal of Chemical Physics, vol. 83, no. 3, pp. 1356-1362, 1985. [40] Z. Fan and A. O. Govorov, "Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism," The Journal of Physical Chemistry C, vol. 115, no. 27, pp. 13254-13261, 2011. [41] H.-H. Jeong, A. G. Mark, M. Alarcón-Correa, I. Kim, P. Oswald, T.-C. Lee, and P. Fischer, "Dispersion and shape engineered plasmonic nanosensors," Nature Communications, vol. 7, p. 11331, 2016. [42] G. Rikken and E. Raupach, "Pure and cascaded magnetochiral anisotropy in optical absorption," Physical Review E, vol. 58, no. 4, p. 5081, 1998. [43] K. Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," presented at the IEEE Transactions on Antennas and Propagation, 1966. [44] L. Brillouin, "Les électrons dans les métaux et le classement des ondes de de Broglie correspondantes," Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, vol. 191, p. 292, 1930. [45] W. Luedtke and U. Landman, "Preparation, structure, dynamics, and energetics of amorphous silicon: A molecular-dynamics study," Physical Review B, vol. 40, no. 2, p. 1164, 1989. [46] D. Franzblau, "Computation of ring statistics for network models of solids," Physical Review B, vol. 44, no. 10, p. 4925, 1991. [47] R. M. Kaufmann, S. Khlebnikov, and B. W. Kaufmann, "The geometry of the double gyroid network: quantum and classical," Journal of Noncommutative Geometry, vol. 6, pp. 623-664, 2012. [48] B. P. Cumming, M. D. Turner, G. E. Schroder-Turk, S. Debbarma, B. Luther-Davies, and M. Gu, "Adaptive optics enhanced direct laser writing of high refractive index gyroid photonic crystals in chalcogenide glass," Optics Express, vol. 22, pp. 689-698, 2014. [49] G. T. Barkema and N. Mousseau, "High-quality continuous random networks," Physical Review B, vol. 62, pp. 4985-4990, 2000. [50] C. S. O'Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, "Jamming at zero temperature and zero applied stress: the epitome of disorder," Physical Review E, vol. 68, p. 11306, 2003. [51] G. J. Gao, J. Blawzdziewicz, and C. S. O'Hern, "Frequency distribution of mechanically stable disk packings," Physical Review E, vol. 74, p. 61304, 2006. [52] C. R. Wronski, "Intrinsic and Light Induced Gap States in a-Si:H Materials and Solar Cells - Effects of Microstructure," Thin Solid Films, pp. 470-475, 2004. [53] F. Wooten, K. Winer, and D. Weaire, "computer generation of structural models of amorphous Si and Ge," Physical Review Letters, vol. 54, pp. 1392-1395, 1985. [54] R. Vink, G. Barkema, M. Stijnman, and R. Bisseling, "Device-size atomistic models of amorphous silicon," Physical Review B, vol. 64, no. 24, p. 245214, 2001. [55] C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F.-J. Haug, S. Fan, C. Ballif, and Y. Cui, "High-Efficiency Amorphous Silicon Solar Cell on a Periodic Nanocone Back Reflector," Advanced Energy Materials, vol. 2, pp. 628-633, 2012. [56] B. Hajek, "Optimization by simulated annealing: a necessary and sufficient condition for convergence," Lecture Notes-Monograph Series, pp. 417-427, 1986. [57] A. J. Stone and D. J. Wales, "Theoretical studies of icosahedral C60 and some related structures," Chemical Physics Letters, vol. 128, pp. 501-503, 1986. [58] E. Brayfindley, E. E. Irace, C. Castro, and W. L. Karney, "Stone–Wales Rearrangements in Polycyclic Aromatic Hydrocarbons: A Computational Study," The Journal of Organic Chemistry, vol. 80, no. 8, pp. 3825-3831, 2015. [59] P. N. Keating, "Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure," Physical Review, vol. 145, p. 637, 1966. [60] L. Genzel and T. Martin, "Infrared absorption by surface phonons and surface plasmons in small crystals," Surface Science, vol. 34, no. 1, pp. 33-49, 1973. [61] A. Cox, A. J. DeWeerd, and J. Linden, "An experiment to measure Mie and Rayleigh total scattering cross sections," American Journal of Physics, vol. 70, no. 6, pp. 620-625, 2002. [62] F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, "Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection," Physical Review Letters, vol. 101, no. 15, p. 157403, 2008. [63] Y.-R. Li, R.-M. Ho, and Y.-C. Hung, "Plasmon hybridization and dipolar interaction on the resonances of helix metamaterials," IEEE Photonics Journal, vol. 5, no. 2, pp. 2700510-2700510, 2013. [64] J. G. Gibbs, A. G. Mark, T.-C. Lee, S. Eslami, D. Schamel, and P. Fischer, "Nanohelices by shadow growth," Nanoscale, vol. 6, no. 16, pp. 9457-9466, 2014. [65] A. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, and L. M. Liz-Marzán, "From individual to collective chirality in metal nanoparticles," Nano Today, vol. 6, no. 4, pp. 381-400, 2011. [66] P. K. Jain, S. Eustis, and M. A. El-Sayed, "Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model," The Journal of Physical Chemistry B, vol. 110, no. 37, pp. 18243-18253, 2006.
|