帳號:guest(18.116.15.129)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周心平
作者(外文):Chou, Hsin-Ping
論文名稱(中文):再平衡的混合正則化
論文名稱(外文):Remix: Rebalanced Mixup
指導教授(中文):張世杰
指導教授(外文):Chang, Shih-Chieh
口試委員(中文):陳煥宗
帥宏翰
口試委員(外文):Chen, Hwann-Tzong
Shuai, Hong-Han
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊系統與應用研究所
學號:107065524
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:35
中文關鍵詞:資料不平衡影像辨識正則化
外文關鍵詞:Data ImbalanceImage RecognitionRegularization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:117
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
基於深度學習的類神經網路分類器經常在訓練資料極端不平衡的情況下表現得差強人意。在這篇論文中,我們提出一個新的正則化技巧:Remix,來解開原本在正則化技巧:Mixup 中對於特徵空間與目標空間綁定的混合比例,更明確的來說,當我們混合兩筆訓練資料時,Remix 會產生一個更偏袒少數類別的目標,藉此將決策邊界移向多數類別,進而取得更好的效能與一般性。我們研究了當前最新的正則化技巧: Mixup,Manifold Mixup 以及 CutMix 在資料不平衡時的表現,利用CIFAR-10, CIFAR-100 以及 CINIC-10 建立的不平衡資料集上的實驗結果顯示我們提出的Remix 顯著的超越這些最新的正則化技巧以及其他傳統對抗資料不平衡的方法例如重採樣、加權,同時,我們也在一個先天資料不平衡的大型資料集iNaturalist 2018 上驗證了我們的方法,取得了顯著的進步。
Deep image classifiers often perform poorly when training data are heavily class-imbalanced. In this work, we propose a new regularization technique “Remix” that relaxes Mixup’s formulation and enables the mixing factors of features and labels to be disentangled. Specifically, when mixing two samples, while features are mixed up proportionally in same fashion as Mixup methods, Remix assigns the label in favor of the minority class by providing a disproportionately higher weight to the minority class. By doing so, the classifier learns to push the decision boundaries towards the majority classes, which balances the generalization error between majority and minority classes. We have studied the state-of-the-art regularization techniques such as Mixup, Manifold Mixup and CutMix under class-imbalanced regime, and shown that the proposed Remix significantly outperforms these state-of-the-arts and several re-weighting and re-sampling techniques, on the imbalanced datasets artificially constructed by CIFAR-10, CIFAR-100, and CINIC-10. We have also evaluated Remix on a real-world imbalanced dataset, iNaturalist 2018. The experimental results confirmed that Remix provides consistent and significant improvements over the state-of-the-arts.
1 Introduction 1

2 Related Works 5
2.1 Re-Weighting . . . . . . . . . . . . . . . . . 5
2.2 Re-Sampling . . . . . . . . . . . . . . . . . . 6
2.3 Alternative Training Objectives . . . . . . . . 7
2.4 Mixup-based Regularization . . . . . . . . . . 7

3 Rebalanced Mixup 9
3.1 Preliminaries . . . . . . . . . . . . . . . . . . 9
3.1.1 Mixup . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Manifold Mixup . . . . . . . . . . . . . . . 10
3.1.3 CutMix . . . . . . . . . . . . . . . . . . . . 11
3.2 Rebalanced Mixup . . . . . . . . . . . . . . .. 12

4 Experiments 17
4.1 Datasets . . . . . . . . .. . . . . . . . . . . . 17
4.1.1 Imbalanced CIFAR . . . . .. . . . . . . . . . . 17
4.1.2 Imbalanced CINIC . . . . . . . . . . . . . . . 18
4.1.3 iNaturalist 2018 . . . . . . .. . . . . . . . . 19
4.2 Experimental Setup . .. . . . . . . . . . . . . . 19
4.2.1 CIFAR and CINIC-10 . . . .. . . . . . . . . . . 19
4.2.2 iNaturalist 2018 . . . . .. . . . . . . . . . . 20
4.2.3 Baseline Methods for Comparison . . . . . . . . 21
4.3 Results on Imbalanced CIFAR and . . . . . . . . . 22
4.4 Results on iNaturalist 2018 . . . . . . . . . . . 24
4.5 Ablation Studies . . . .. . . . . . . . . . . . . 25
4.6 Qualitative Analysis . . .. . . . . . . . . . . . 27

5 Conclusions 29

References 30

[1] D. Berthelot, N. Carlini, I. G. Goodfellow, N. Papernot, A. Oliver, and C. Raffel. Mixmatch: A holistic approach to semi-supervised learning. In NeurIPS, 2019.
[2] K. W. Bowyer, N. V. Chawla, L. O. Hall, and W. P. Kegelmeyer. Smote: Synthetic
minority over-sampling technique. J. Artif. Intell. Res., 16:321–357, 2002.
[3] S. R. Bulo, G. Neuhold, and P. Kontschieder. Loss max-pooling for semantic image`
segmentation. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 7082–7091, 2017.
[4] J. Byrd and Z. C. Lipton. What is the effect of importance weighting in deep learn-
ing? In ICML, 2018.
[5] K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma. Learning imbalanced datasets
with label-distribution-aware margin loss. In Advances in Neural Information Processing Systems, 2019.
[6] Y.-A. Chung, H.-T. Lin, and S.-W. Yang. Cost-aware pre-training for multiclass
cost-sensitive deep learning. In IJCAI, 2015.
[7] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie. Class-balanced loss based on
effective number of samples. In CVPR, 2019.
[8] L. N. Darlow, E. Crowley, A. Antoniou, and A. J. Storkey. Cinic-10 is not imagenet
or cifar-10. ArXiv, abs/1810.03505, 2018.
[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, 2019.
[10] T. DeVries and G. W. Taylor. Improved regularization of convolutional neural net-
works with cutout. arXiv preprint arXiv:1708.04552, 2017.
[11] C. Elkan. The foundations of cost-sensitive learning. In IJCAI, 2001.
[12] H. He, Y. Bai, E. A. Garcia, and S. Li. Adasyn: Adaptive synthetic sampling ap-
proach for imbalanced learning. 2008 IEEE International Joint Conference on Neu-
ral Networks (IEEE World Congress on Computational Intelligence), pages 1322– 1328, 2008.
[13] Y. N. D. D. L.-P. Hongyi Zhang, Moustapha Cisse. mixup: Beyond empirical risk
minimization. International Conference on Learning Representations, 2018.
[14] G. V. Horn, O. M. Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard, H. Adam, P. Perona,
and S. J. Belongie. The inaturalist species classification and detection dataset. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8769– 8778, 2017.
[15] G. V. Horn and P. Perona. The devil is in the tails: Fine-grained classification in the
wild. ArXiv, abs/1709.01450, 2017.
[16] C. Huang, Y. Li, C. C. Loy, and X. Tang. Learning deep representation for im-
balanced classification. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5375–5384, 2016.
[17] J. S. Jaehyung Kim, Jongheon Jeong. Imbalanced classification via adversarial mi-
nority over-sampling. OpenReview, 2019.
[18] G. Lample, M. Ott, A. Conneau, L. Denoyer, and M. Ranzato. Phrase-based &
neural unsupervised machine translation. In EMNLP, 2018.
[19] Z.-Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. Al-
bert: A lite bert for self-supervised learning of language representations. ArXiv,
abs/1909.11942, 2019.
[20] Z. Li, T. Dekel, F. Cole, R. Tucker, N. Snavely, C. Liu, and W. T. Freeman. Learning
the depths of moving people by watching frozen people. In CVPR, 2019.
[21] T.-Y. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollar. Focal loss for dense object´
detection. IEEE transactions on pattern analysis and machine intelligence, 2017.
[22] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song. Sphereface: Deep hypersphere
embedding for face recognition. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 6738–6746, 2017.
[23] W. Liu, Y. Wen, Z. Yu, and M. Yang. Large-margin softmax loss for convolutional
neural networks. In ICML, 2016.
[24] Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu. Large-scale long-tailed
recognition in an open world. In CVPR, 2019.
[25] S. S. Mullick, S. Datta, and S. Das. Generative adversarial minority oversampling. In The IEEE International Conference on Computer Vision (ICCV), October 2019.
[26] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. D.-I. Kopf, E. Yang, Z. DeVito, M. Rai-
son, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Py-
torch: An imperative style, high-performance deep learning library. In NeurIPS 2019, 2019.
[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.
[28] T. R. Shaham, T. Dekel, and T. Michaeli. Singan: Learning a generative model from
a single natural image. In The IEEE International Conference on Computer Vision (ICCV), October 2019.
[29] R. Takahashi, T. Matsubara, and K. Uehara. Ricap: Random image cropping and
patching data augmentation for deep cnns. In Proceedings of The 10th Asian Con-
ference on Machine Learning, 2018.
[30] S. Thulasidasan, G. Chennupati, J. A. Bilmes, T. Bhattacharya, and S. E. Michalak. On mixup training: Improved calibration and predictive uncertainty for deep neural
networks. In NeurIPS, 2019.
[31] K. X. Tianyu Pang and J. Zhu. Mixup inference: Better exploiting mixup to defend
adversarial attacks. In ICLR, 2020.
[32] S. van Steenkiste, K. Greff, and J. Schmidhuber. A perspective on objects and sys-
tematic generalization in model-based rl. ArXiv, abs/1906.01035, 2019.
[33] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas, D. Lopez-Paz, and
Y. Bengio. Manifold mixup: Better representations by interpolating hidden states. In
K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pages 6438–6447, Long Beach, California, USA, 09–15 Jun 2019. PMLR.
[34] V. Verma, A. Lamb, J. Kannala, Y. Bengio, and D. Lopez-Paz. Interpolation consis-
tency training for semi-supervised learning. In IJCAI, 2019.
[35] S. Wang, W. Liu, J. Wu, L. Cao, Q. Meng, and P. J. Kennedy. Training deep neural
networks on imbalanced data sets. 2016 International Joint Conference on Neural Networks (IJCNN), pages 4368–4374, 2016.
[36] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, G. Liu, A. Tao, J. Kautz, and B. Catanzaro. Video-
to-video synthesis. In NeurIPS, 2018.
[37] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo. Cutmix: Regularization strat-
egy to train strong classifiers with localizable features. In International Conference
on Computer Vision (ICCV), 2019.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *