帳號:guest(3.138.135.56)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅宏翊
作者(外文):Luo, Hung-Yi
論文名稱(中文):分散式無人機群在路徑規劃中彈性隊形協調
論文名稱(外文):Flexible formation coordination for distributed UAVs path planning
指導教授(中文):蘇豐文
指導教授(外文):Soo, Von-Wun
口試委員(中文):胡敏君
口試委員(外文):Hu, Min-Chun
Liu, Rey-Long
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊系統與應用研究所
學號:107065523
出版年(民國):109
畢業學年度:109
語文別:英文
論文頁數:29
中文關鍵詞:無人機隊形路徑規劃去中心化分散式
外文關鍵詞:UAVformtaionpath planningdecentralizeddistributed
相關次數:
  • 推薦推薦:0
  • 點閱點閱:381
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
分散式無人機群隊形協調是一個具有挑戰的研究方向。由於缺乏長機(隊長)規劃隊形及發布命令,各無人機需要靠自己的決策以控制隊形。然而無人機在軍事用途中,需要動態且即時應對戰場危險,此時較小的隊形規劃計算成本顯得非常重要。我們針對這問題提出一種彈性的隊形協調策略,使無人機群如同鳥和魚群,在行進過程沒有固定的隊形卻能保持緊湊的相對位置而不相撞。即使有隊友在飛行過程中加入或者在途中被擊落,無人機群仍然能在任何地圖中繼續保持隊形完成任務。
Formation coordination for distributed Unmanned Ariel Vehicle (UAV) has been a challenging topic. Without a leader that computes the formation for other teammates, each UAV needs to make its own decision to form the formation. However, in a battlefield environment, UAVs are required to react dynamically and immediately, and therefore less computing cost of formation planning is essential. Consequently, we propose a flexible formation coordination scheme for such a problem. Similar to a flock of birds or a school of fish, they move without a specific formation, maintaining the compactness of the relative position among each other without collision. Despite other teammates join the team or crush while flying, UAVs can still keep the formation and complete the mission. The UAVs with the proposed distributed formation path planning algorithms can accomplish the tasks satisfactorily and flexibly.
摘要 i
Abstract ii
List of Figures v
List of Tables vi
List of Algorithms vii
1 Introduction...1
2 Related Work...5
3 Methodology...8
3.1 Model Formulation...8
3.2 Consensus Scoring System...10
3.3 Distributed Path Planning Algorithm...12
4 Experiments and Results...17
4.1 Validation of The Scoring System...18
4.2 Validation of Comprehensive Performance...20
4.2.1 Multiple Obstacles Avoidance...20
4.2.2 Passing Through a Narrow Passage...21
4.2.3 Maze-like Environment...23
5 Conclusion and Future Work...25
References...27
[1] Simon Hubbard, Petro Babak, Sven Th Sigurdsson, and Kjartan G Magn´usson. A model of the formation of fish schools and migrations of fish. Ecological Modelling, 174(4):359–374, 2004.
[2] Brian DO Anderson, Baris¸ Fidan, Changbin Yu, and Dirk Walle. Uav formation control: Theory and application. In Recent advances in learning and control, pages 15–33. Springer, 2008.
[3] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to colli-sion avoidance. IEEE Robotics Automation Magazine, 4(1):23–33, 1997. doi: 10.1109/100.580977.
[4] Tucker Balch and Ronald C Arkin. Behavior-based formation control for multirobot teams. IEEE transactions on robotics and automation, 14(6):926–939, 1998.
[5] J. R. T. Lawton, R. W. Beard, and B. J. Young. A decentralized approach to formation maneuvers. IEEE Transactions on Robotics and Automation, 19(6):933–941, 2003.
Petros S Bithas, Emmanouel T Michailidis, Nikolaos Nomikos, Demosthenes Vouyioukas, and Athanasios G Kanatas. A survey on machine-learning techniques for uav-based communications. Sensors, 19(23):5170, 2019.
[7] Herbert G Tanner, George J Pappas, and Vijay Kumar. Leader-to-formation stability. IEEE Transactions on robotics and automation, 20(3):443–455, 2004.
[8] Jakob Fredslund and Maja J Mataric. A general algorithm for robot formations us-ing local sensing and minimal communication. IEEE transactions on robotics and automation, 18(5):837–846, 2002.
[9] Delin Luo, Wenlong Xu, Shunxiang Wu, and Youping Ma. Uav formation flight con-trol and formation switch strategy. In 2013 8th International Conference on Computer Science & Education, pages 264–269. IEEE, 2013.
[10] Randal W Beard, Jonathan Lawton, and Fred Y Hadaegh. A coordination architecture for spacecraft formation control. IEEE Transactions on control systems technology, 9 (6):777–790, 2001.
[11] H. Rezaee and F. Abdollahi. A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots. IEEE Transactions on Industrial Electronics, 61(1):347–354, 2014. doi: 10.1109/TIE.2013.2245612.
[12] Wei Ren. Consensus strategies for cooperative control of vehicle formations. IET Control Theory & Applications, 1(2):505–512, 2007.
[13] A. Baranzadeh and V. Nazarzehi. A decentralized formation building algorithm with obstacle avoidance for multi-robot systems. In 2015 IEEE International Con-ference on Robotics and Biomimetics (ROBIO), pages 2513–2518, 2015. doi: 10.1109/ROBIO.2015.7419717.
[14] X. Dong, Y. Hua, Y. Zhou, Z. Ren, and Y. Zhong. Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle sys-tems. IEEE Transactions on Automation Science and Engineering, 16(1):229–240, 2019. doi: 10.1109/TASE.2018.2792327.
[15] J. Alonso-Mora, E. Montijano, M. Schwager, and D. Rus. Distributed multi-robot for-mation control among obstacles: A geometric and optimization approach with con-sensus. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 5356–5363, 2016. doi: 10.1109/ICRA.2016.7487747.
[16] H. Zhu, J. Juhl, L. Ferranti, and J. Alonso-Mora. Distributed multi-robot formation splitting and merging in dynamic environments. In 2019 International Conference on Robotics and Automation (ICRA), pages 9080–9086, 2019. doi: 10.1109/ICRA.2019. 8793765.
[17] Haibo Min, Fuchun Sun, and Feng Niu. Decentralized uav formation tracking flight control using gyroscopic force. In 2009 IEEE International Conference on Compu-tational Intelligence for Measurement Systems and Applications, pages 91–96, 2009. doi: 10.1109/CIMSA.2009.5069925.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *