帳號:guest(18.224.60.242)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張瀞芝
作者(外文):Chang, Ching-Chih
論文名稱(中文):社群公開資料與使用者資料貢獻意願關係
論文名稱(外文):Inferring and Understanding the Willingness of Disclosing Personal Information in Online Social Networks
指導教授(中文):沈之涯
指導教授(外文):Shen, Chih-Ya
口試委員(中文):楊得年
許倍源
口試委員(外文):Yang, De-Nian
Hsu, Bay-Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊系統與應用研究所
學號:107065516
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:44
中文關鍵詞:個人社群資料網路
外文關鍵詞:PersonalOnlineInformationSocialNetworks
相關次數:
  • 推薦推薦:0
  • 點閱點閱:404
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來社群網路對於人類生活越來越重要,逐漸成為不可或缺的項目,而長時間的使用社群軟體,讓使用者在網路上的行為也可以視為人格特質的一種表現。因此,如果能獲取到這些資訊,那便能夠去做更多的應用與發展,這將會對社會形成極大幫助。不過,我們觀察到這些資訊在隱私意識高漲的前提下,要取得到它實屬不易。為了解決這項問題,我們開發了一套機器學習方式,去取得使用者的資料貢獻意願。此方法注重在資料蒐集的過程中,利用關鍵的特徵來去降低開發者的時間與成本。實驗結果,我們的研究成果可以有效的辨識出使用者的關鍵特徵,期望未來能運用在商業活動以及學術研究中。
In recent years, social networks have become more and more important to human life and have gradually become an indispensable item. Using social software for a long time allows users to behave on the Internet as a manifestation of personality traits. Therefore, if developers can obtain this information, they can do more applications and development, which will greatly help society. However, we have observed that this information is not easy to obtain under the premise of a high level of privacy awareness. In order to solve this problem, we have developed a set of machine learning methods to obtain users' willingness to contribute data. This method focuses on the use of key features in the process of data collection to reduce the developer's time and cost. As a result of the experiment, our research results can effectively identify the key characteristics of users, and we hope this work can be used in commercial activities and academic research in the future.
前言 p1
相關文獻 p8 資料探勘 p8
特徵選擇 p8
機器學習 p9
資料貢獻意願 p9
方法 p11
問題描述 p12
資料敘述 p13
實驗 p18
結論 p25
[1] Hand, D. J. (2007). Principles of data mining. Drug safety, 30(7), 621-622.

[2] Liu, H., & Yu, L. (2005). Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on knowledge and data engineering, 17(4), 491-502.

[3] Agrawal, R., Imielinski, T., & Swami, A. (1993). Database mining: A performance perspective. IEEE transactions on knowledge and data engineering, 5(6), 914-925.

[4] Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37-37.

[5] Han, J., & Fu, Y. (1996). 16 Exploration of the Power of Attribute-Oriented Induction in Data Mining. Ad… ces in KnowLedge Discover and Data Mining. Cambridge: AAAI/'&I1T Press, 1g96, 399-42l.

[6] Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.

[7] Kantardzic, M. (2011). Data mining: concepts, models, methods, and algorithms. John Wiley & Sons.

[8] Dash, M., Choi, K., Scheuermann, P., & Liu, H. (2002, December). Feature selection for clustering-a filter solution. In 2002 IEEE International Conference on Data Mining, 2002. Proceedings. (pp. 115-122). IEEE.

[9] Hall, M. A. (2000). Correlation-based feature selection of discrete and numeric class machine learning.

[10] Rokach, L., & Maimon, O. Z. (2007). Data mining with decision trees: theory and applications (Vol. 69). World scientific.

[11] Kira, K., & Rendell, L. A. (1992). A practical approach to feature selection. In Machine learning proceedings 1992 (pp. 249-256). Morgan Kaufmann.

[12] Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 1157-1182.

[13] Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2017). Feature selection: A data perspective. ACM Computing Surveys (CSUR), 50(6), 1-45.

[14] Dy, J. G., & Brodley, C. E. (2000, June). Feature subset selection and order identification for unsupervised learning. In ICML (pp. 247-254).

[15] Kim, Y., Street, W. N., & Menczer, F. (2000, August). Feature selection in unsupervised learning via evolutionary search. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 365-369).

[16] Das, S. (2001, June). Filters, wrappers and a boosting-based hybrid for feature selection. In Icml (Vol. 1, pp. 74-81).

[18]
Xing, E. P., Jordan, M. I., & Karp, R. M. (2001, June). Feature selection for high-dimensional genomic microarray data. In Icml (Vol. 1, pp. 601-608).

[19] Cai, J., Luo, J., Wang, S., & Yang, S. (2018). Feature selection in machine learning: A new perspective. Neurocomputing, 300, 70-79.

[20] Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent data analysis, 1(1-4), 131-156.

[21] Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16-28.

[22] Fernández, A., García, S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F. (2018). Learning from imbalanced data sets (Vol. 10, pp. 978-3). Berlin: Springer.

[23] Chawla, N. V., Japkowicz, N., & Kotcz, A. (2004). Special issue on learning from imbalanced data sets. ACM SIGKDD explorations newsletter, 6(1), 1-6.

[24] He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on knowledge and data engineering, 21(9), 1263-1284.

[25] Han, H., Wang, W. Y., & Mao, B. H. (2005, August). Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In International conference on intelligent computing (pp. 878-887). Springer, Berlin, Heidelberg.

[26] Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.

[27] García, V., Sánchez, J. S., & Mollineda, R. A. (2012). On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Knowledge-Based Systems, 25(1), 13-21.

[28] Napierala, K., & Stefanowski, J. (2016). Types of minority class examples and their influence on learning classifiers from imbalanced data. Journal of Intelligent Information Systems, 46(3), 563-597.

[29] Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., & Lopez, A. (2020). A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing, 408, 189-215.

[30] Caruana, R., & Niculescu-Mizil, A. (2006, June). An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd international conference on Machine learning (pp. 161-168).

[31] Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197-227.

[32] Romero, C., & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12-27.

[33] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

[34] Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification and regression trees. Routledge.

[35] Hastie, T., Tibshirani, R., & Friedman, J. (2009). Overview of supervised learning. In The elements of statistical learning (pp. 9-41). Springer, New York, NY.

[36] Niculescu-Mizil, A., & Caruana, R. (2005, August). Predicting good probabilities with supervised learning. In Proceedings of the 22nd international conference on Machine learning (pp. 625-632).

[37] Chen, M. S., Han, J., & Yu, P. S. (1996). Data mining: an overview from a database perspective. IEEE Transactions on Knowledge and data Engineering, 8(6), 866-883.

[38] Larose, D. T., & Larose, C. D. (2014). Discovering knowledge in data: an introduction to data mining (Vol. 4). John Wiley & Sons.

[39] Rempel, J. K., Holmes, J. G., & Zanna, M. P. (1985). Trust in close relationships. Journal of personality and social psychology, 49(1), 95.

[40] Vidmar, N., & Flaherty, D. H. (1985). Concern for personal privacy in an electronic age. Journal of Communication, 35(2), 91-103.

[41] O’brien, E., Konrath, S. H., Grühn, D., & Hagen, A. L. (2013). Empathic concern and perspective taking: Linear and quadratic effects of age across the adult life span. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 68(2), 168-175.

[42] kaggle Datasets: Find Open Datasets and Machine Learning Projects. (n.d.).

[43] Uci Machine Learning Repository. (n.d.). UCI Machine Learning Repository.

[44] Leskovec, J., & Krev, A. (2014, January). SNAP Datasets: Stanford Large Network Dataset Collection.

[45] Oshiro, T. M., Perez, P. S., & Baranauskas, J. A. (2012, July). How many trees in a random forest?. In International workshop on machine learning and data mining in pattern recognition (pp. 154-168). Springer, Berlin, Heidelberg.

[46] Helbing, D., Brockmann, D., Chadefaux, T., Donnay, K., Blanke, U., Woolley-Meza, O., ... & Perc, M. (2015). Saving human lives: What complexity science and information systems can contribute. Journal of statistical physics, 158(3), 735-781.

[47] Coudel, E., & Tonneau, J. P. (2010). How can information contribute to innovative learning processes? Insight from a farmer university in Brazil.

[48] Davies, B. S., Rafique, J., Vincent, T. R., Fairclough, J., Packer, M. H., Vincent, R., & Haq, I. (2012). Mobile Medical Education (MoMEd)-how mobile information resources contribute to learning for undergraduate clinical students-a mixed methods study. BMC medical education, 12(1), 1-11.

[49] Majeed, M. T., & Khan, F. N. (2019). Do information and communication technologies (ICTs) contribute to health outcomes? An empirical analysis. Quality & quantity, 53(1).

[50] Yang, L., Dumais, S. T., Bennett, P. N., & Awadallah, A. H. (2017, August). Characterizing and predicting enterprise email reply behavior. In Proceedings of the 40th international acm sigir conference on research and development in information retrieval (pp. 235-244).

[51] Dabbish, L. A., Kraut, R. E., Fussell, S., & Kiesler, S. (2005, April). Understanding email use: predicting action on a message. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 691-700).

[52] Tyler, J. R., & Tang, J. C. (2003). When can I expect an email response? A study of rhythms in email usage. In ECSCW 2003 (pp. 239-258). Springer, Dordrecht.

[53] Li, X. (2011). Factors influencing the willingness to contribute information to online communities. New Media & Society, 13(2), 279-296.

[54] Borgatti, S. P., & Cross, R. (2003). A relational view of information seeking and learning in social networks. Management science, 49(4), 432-445.

[55] Hsu, B. Y., Shen, C. Y., & Chang, M. Y. (2020, October). Wmego: Willingness maximization for ego network data extraction in online social networks. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 515-524).

[56] Harvey, F. (2013). To volunteer or to contribute locational information? Towards truth in labeling for crowdsourced geographic information. In Crowdsourcing geographic knowledge (pp. 31-42). Springer, Dordrecht.

[57] Mori, J., Sugiyama, T., & Matsuo, Y. (2005, November). Real-world oriented information sharing using social networks. In Proceedings of the 2005 international ACM SIGGROUP conference on Supporting group work (pp. 81-84).

[58] Rainie, L., & Duggan, M. (2016). Privacy and information sharing.

[59] Hsu, B. Y., Tu, C. L., Chang, M. Y., & Shen, C. Y. (2019, September). On crawling community-aware online social network data. In Proceedings of the 30th ACM conference on hypertext and social media (pp. 265-266).

[60] Arya, V., Sethi, D., & Paul, J. (2019). Does digital footprint act as a digital asset?–Enhancing brand experience through remarketing. International Journal of Information Management, 49, 142-156.

[61] Zviran, M. (2008). User's perspectives on privacy in web-based applications. Journal of Computer Information Systems, 48(4), 97-105.

[62] Liu, C., Marchewka, J. T., & Ku, C. (2004). American and Taiwanese perceptions concerning privacy, trust, and behavioral intentions in electronic commerce. Journal of Global Information Management (JGIM), 12(1), 18-40.

[63] O'Connor, P. (2006). An international comparison of approaches to online privacy protection: implications for the hotel sector. Journal of Services Research, 6.

[64] Laufer, R. S., & Wolfe, M. (1977). Privacy as a concept and a social issue: A multidimensional developmental theory. Journal of social Issues, 33(3), 22-42.

[65] Culnan, M. J., & Milberg, S. (1998). The second exchange: Managing customer information in marketing relationships. Georgetown McDonough School of Business Research Paper, (2621796).

[66] Dinev, T., & Hart, P. (2006). An extended privacy calculus model for e-commerce transactions. Information systems research, 17(1), 61-80.

[67] Milne, G. R., & Boza, M. E. (1999). Trust and concern in consumers’ perceptions of marketing information management practices. Journal of interactive Marketing, 13(1), 5-24.

[68] Shim, J. T., Van Slyke, C., Jiang, J. J., & Johnson, R. D. (2004). Does trust reduce concern for information privacy in e-commerce?. Researchgate.

[69] Bhattacherjee, A. (2002). Individual trust in online firms: Scale development and initial test. Journal of management information systems, 19(1), 211-241.

[70] Li, E. Y., McLeod Jr, R., & Rogers, J. C. (2001). Marketing information systems in Fortune 500 companies: a longitudinal analysis of 1980, 1990, and 2000. Information & Management, 38(5), 307-322.

[71] Liu, C., Marchewka, J. T., & Ku, C. (2004). American and Taiwanese perceptions concerning privacy, trust, and behavioral intentions in electronic commerce. Journal of Global Information Management (JGIM), 12(1), 18-40.

[72] O'Connor, P. (2006). An international comparison of approaches to online privacy protection: implications for the hotel sector. Journal of Services Research, 6.

[73] Phelps, J. E., D'Souza, G., & Nowak, G. J. (2001). Antecedents and consequences of consumer privacy concerns: An empirical investigation. Journal of Interactive Marketing, 15(4), 2-17.

[74]Ahmed, N. K., Neville, J., & Kompella, R. (2013). Network sampling: From static to streaming graphs. ACM Transactions on Knowledge Discovery from Data (TKDD), 8(2), 1-56.

[75]Ahmed, N. K., Duffield, N., Willke, T., & Rossi, R. A. (2017). On sampling from massive graph streams. arXiv preprint arXiv:1703.02625.

[76] Ye, S., Lang, J., & Wu, F. (2010, April). Crawling online social graphs. In 2010 12th International Asia-Pacific Web Conference (pp. 236-242). IEEE.

[77] Gjoka, M., Kurant, M., Butts, C. T., & Markopoulou, A. (2011). Practical recommendations on crawling online social networks. IEEE Journal on Selected Areas in Communications, 29(9), 1872-1892.

[78] Blenn, N., Doerr, C., Van Kester, B., & Van Mieghem, P. (2012, May). Crawling and detecting community structure in online social networks using local information. In International Conference on Research in Networking (pp. 56-67). Springer, Berlin, Heidelberg.

[79] McKinney, B. C., Kelly, L., & Duran, R. L. (2012). Narcissism or openness?: College students’ use of Facebook and Twitter. Communication Research Reports, 29(2), 108-118.

[80] Kaplan, S. C., Levinson, C. A., Rodebaugh, T. L., Menatti, A., & Weeks, J. W. (2015). Social anxiety and the big five personality traits: The interactive relationship of trust and openness. Cognitive behaviour therapy, 44(3), 212-222.

[81] Brynjolfsson, E., & Saunders, A. (2009). Wired for innovation: How information technology is reshaping the economy. Mit Press.

[82] Dedrick, J., Gurbaxani, V., & Kraemer, K. L. (2003). Information technology and economic performance: A critical review of the empirical evidence. ACM Computing Surveys (CSUR), 35(1), 1-28.

[83] Fallahi, V. (2011). Effects of ICT on the youth: A study about the relationship between internet usage and social isolation among Iranian students. Procedia-Social and Behavioral Sciences, 15, 394-398.

[84] Seybert, H., & Lööf, A. (2010). Internet usage in 2010–Households and Individuals. Eurostat, data in Focus, 50-2010.

[85] Takaffoli, M., Rabbany, R., & Zaïane, O. R. (2014, August). Community evolution prediction in dynamic social networks. In 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014) (pp. 9-16). IEEE.

[86] Berger-Wolf, T. Y., & Saia, J. (2006, August). A framework for analysis of dynamic social networks. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 523-528).

[87] Greene, D., Doyle, D., & Cunningham, P. (2010, August). Tracking the evolution of communities in dynamic social networks. In 2010 international conference on advances in social networks analysis and mining (pp. 176-183). IEEE.

[88] Adamic, L. A., Lento, T. M., Adar, E., & Ng, P. C. (2016, February). Information evolution in social networks. In Proceedings of the ninth ACM international conference on web search and data mining (pp. 473-482).

[89] D’Andrea, A., Ferri, F., & Grifoni, P. (2010). An overview of methods for virtual social networks analysis. Computational social network analysis, 3-25.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *