帳號:guest(13.59.45.243)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳宗璘
作者(外文):Wu, Tsung-Lin
論文名稱(中文):適用於二維天線陣列多輸入多輸出毫米波系統混合預編碼追蹤之張量處理器設計及實現
論文名稱(外文):Design and Implementation of Tensor Processor for Hybrid Precoding Tracking in Millimeter Wave 3D-MIMO Systems
指導教授(中文):黃元豪
指導教授(外文):Huang, Yuan-Hao
口試委員(中文):蔡佩芸
陳喬恩
沈中安
口試委員(外文):Tsai, Pei-Yun
Chen, Chiao-En
Shen, Chung-An
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:107064534
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:62
中文關鍵詞:預編碼張量毫米波多輸入多輸出追蹤
外文關鍵詞:precodingtensormillimeter wavemultiple-input multiple-outputtracking
相關次數:
  • 推薦推薦:0
  • 點閱點閱:544
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在第五代行動通訊中,毫米波多輸入多輸出系統被應用來滿足高資料產出量的需求,然而當有大量天線的時候,全數位預編碼的RF鏈在輸入多輸出系統中造成大量的成本,所以混合式預編碼的架構就被用在巨量天線的多輸入多輸出系統來減少RF鏈的數量。傳送在毫米波的訊號有大量的路徑耗損,所以三維多輸入多輸出系統被應用來組成有水平及垂直方向自由度的波束以及中更多能量,張量將可能是一個好的代數工具來表示三維的通道。此篇論文提出一種基於張量的混合式預編碼追蹤演算法來增加頻譜效率,張量分解及正交的特性可以使通道對角化,為了在連續時間的通道中追蹤預編碼,所以將原本的高維度奇異值分解(Higher-order singular value decomposition)由高維正交遞迴(Higher-order orthogonal iteration)取代。此篇論文用QuaDRiGa 通道模型來模擬所提出的演算法,模擬結果顯示所提出的演算法的頻譜效率在SNR低的區域有比較好的表現以及所提出的演算法適合在稀疏性較高的通道被使用。我們也提出了一個硬體架構支援64根傳送天線被實現在FPGA-xcvu19p-fsvb3824-1-e,這個混合式預編碼的處理器的時脈頻率為83.33 MHz,資料產出量可達到每秒 33.280/16.640/11.093 k 個預編碼當演算法遞迴1/2/3次得時候,此資料產出量可以達到通道同調時間的需求。
The millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems are applied to satisfy the high-throughput requirement in the fifth-generation communication. However, the RF chains of fully digital precoding cost a lot in MIMO systems when the number of antennas becomes massive. The architectures of hybrid precoding are used in massive MIMO systems to reduce the RF chain number. The signals in mmWave have significant path loss, so a three-dimensional (3D) MIMO is applied to form beams in two dimensions to gain more power. Tensor may be a suitable algebraic object to represent a 3D-MIMO channel.
This thesis proposed a tensor-based hybrid precoding tracking algorithm for 3D-MIMO systems to improve spectral efficiency. The tensor decomposition and all-orthogonal property can diagonalize the 3D-MIMO channel. To track the precoder in continuous-time channels, we replace higher-order singular value decomposition (HOSVD) with higher-order orthogonal iteration (HOOI). This thesis simulates the proposed hybrid precoding with the QuaDRiGa channel model in different scenarios. Simulation results show that the spectral efficiency of the tensor-based hybrid precoding tracking is improved in the low SNR regions, and the tensor-based hybrid precoder is suitable for sparse channels.
In addition, we propose the architecture of the proposed hybrid precoding tracking. This architecture supports 64 antennas and is implemented on FPGA-xcvu19p-fsvb3824-1-e. The hybrid precoding processor can operate with 83.33MHz clock speed. The throughput can achieve 33.280/16.640/11.093 k precoders per second for the number of iteration is 1/2/3, respectively, to satisfy the coherence time requirement.
Abstract
Contents
1 Introduction ...................................................... 1
1.1 Millimeter Wave 3D-MIMO Systems ................................ 1
1.2 Research Motivation ............................................ 2
1.3 Organization of This Thesis .................................... 3
1.4 Notations ...................................................... 4
2 Tensor Definition and Higher-Order Singular Value Decomposition .. 5
2.1 Basic Definition of Tensor ..................................... 5
2.1.1 Tensor ....................................................... 5
2.1.2 Rank of an N-Order Tensor .................................... 6
2.1.3 Scalar product, orthogonality, and norm of tensors ........... 7
2.1.4 N-mode product ............................................... 8
2.2 Higher-Order Singular Value Decomposition ...................... 9
2.2.1 Matrix SVD ................................................... 9
2.2.2 Higher-order SVD ............................................. 10
2.2.3 Low-Rank Approximation Property .............................. 11
3 Channel Model and Hybrid Precoding Algorithm for MIMO Systems .... 15
3.1 QuaDRiGa Channel Model ......................................... 15
3.2 SVD-Based Digital Precoding .................................... 20
3.3 Hybrid Precoding ............................................... 22
3.4 Hybrid Precoding based on Tensor Decomposition ................. 25
4 Proposed Hybrid Precoding Tracking Algorithm ..................... 29
4.1 Proposed tensor-based Hybrid Precoding ......................... 29
4.2 Hybrid Precoding Tracking Algorithm ............................ 32
4.2.1 Higher-Order Orthogonal Iteration ............................ 32
4.2.2 Proposed tensor-based Hybrid Precoding Tracking .............. 35
4.3 Simulation Result and Analysis ................................. 36
5 VLSI Architecture ................................................ 45
5.1 System Architecture ............................................ 45
5.2 HOOI Processor ................................................. 49
5.3 Hybrid Precoder Processor ...................................... 53
5.4 Timing Schedule ................................................ 55
5.5 Synthesis Result ............................................... 56
6 Conclusion ....................................................... 59
References ......................................................... 61
[1] S. K. Yong and C.-C. Chong, “An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges, ”EURASIP Journalon Wireless Communications and Networking, vol. 2007, no. 1, pp. 1–10, 2006.
[2] S. Sun, T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan, “Mimo formillimeter-wave wireless communications: beamforming, spatial multiplexing, orboth?” IEEE Communications Magazine, vol. 52, no. 12, pp. 110–121, 2014.
[3] D. Zhang, P. Pan, R. You, and H. Wang, “Svd-based low-complexity hybrid pre-coding for millimeter-wave mimo systems,” IEEE Communications Letters, vol. 22,no. 10, pp. 2176–2179, 2018.
[4] F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large-scale antenna arrays,” IEEE Journal of Selected Topics in Signal Processing, vol. 10,no. 3, pp. 501–513, 2016.
[5] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAMReview, vol. 51, no. 3, pp. 455–500, 2009.
[6] L. Liu and Y. Tian, “Hybrid precoding based on tensor decomposition for mmwave3d-mimo systems,” in2017 IEEE/CIC International Conference on Communica-tions in China (ICCC), 2017, pp. 1–6.
[7] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods fordownlink spatial multiplexing in multiuser mimo channels,” IEEE Transactions onSignal Processing, vol. 52, no. 2, pp. 461–471, 2004.
[8] L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1 and rank-(r1 , r2 , ..., rn) approximation of higher-order tensors,” SIAM Journal on MatrixAnalysis and Applications, vol. 21, no. 4, pp. 1324–1342, 2000.
[9] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular value decomposition,” SIAM Journal on Matrix Anal-ysis and Applications, vol. 21, no. 4, pp. 1253–1278, 2000.
[10] S. Jaeckel, L. Raschkowski, K. B ̈orner, and L. Thiele, “Quadriga: A 3-d multicellchannel model with time evolution for enabling virtual field trials,” IEEE Trans-actions on Antennas Propagation, 2014.
[11] D. Tse and P. Viswanath, Fundamentals of wireless communications. UK: Cam-bridge University Press, 2005.
[12] K.-T. Chen, Y.-T. Hwang, and Y.-C. Liao, “VLSI design of a high throughputhybrid precoding processor for wireless mimo systems,” IEEE Access, vol. 7, pp.85 925–85 936, 2019.
[13] C.-K. Ho, H.-Y. Cheng, and Y.-H. Huang, “Hybrid precoding processor for mil-limeter wave mimo communications,” IEEE Transactions on Circuits and SystemsII: Express Briefs, vol. 66, no. 12, pp. 1992–1996, 2019.
[14] Y.-Y. Lee, C.-H. Wang, and Y.-H. Huang, “A hybrid rf/baseband precoding processor based on parallel-index-selection matrix-inversion-bypass simultaneous orthogonal matching pursuit for millimeter wave mimo systems,” IEEE Transactions onSignal Processing, vol. 63, no. 2, pp. 305–317, 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 巨量多輸入多輸出系統中基於單串流設計方法之低複雜度混合預編碼研究
2. 雙向放大轉送MIMO中繼系統之基於特徵模選擇機制的中繼點預編碼器設計
3. 雙基地台環境下之大規模多輸入多輸出非正交多重接取下行系統之預編碼與解碼技術
4. 適用於毫米波系統基於多輸入多輸出混合預編碼之濾波正交分頻多工基頻處理器
5. 非完美通道估測情境下之多細胞巨量MIMO-NOMA下行系統的強健式預編碼與解碼技術
6. Low Complexity Hybrid Precoding Algorithm using Multiple Orthogonal Codebook Matrices and Local Search
7. 適用於多輸入多輸出毫米波系統之可擴展平行資料流混合預編碼處理器
8. 多用戶多載波毫米波系統基於子系統奇異值分解與區塊對角化之混合式波束成形設計
9. 適用於寬頻多輸入輸出毫米波系統之混合式預編碼演算法
10. 適用於多輸入多輸出毫米波系統混合波束追蹤之多處理單元粒子濾波器設計與實作
11. 應用於寬頻多輸入多輸出毫米波系統下傳通訊協議及混合式預編碼處理晶片設計
12. 5G毫米波光纖無線整合前傳網路中使用空頻區塊編碼改善非正交多重接取結合多點協作系統之技術
13. 適用於寬頻毫米波系統之混合式預編碼多輸入多輸出濾波正交分頻多工基頻處理器
14. 適用於大量多輸入多輸出毫米波正交分頻多工通訊之基於改進塔克分解混合式波束成型設計及實作
15. 整合感測與通訊之強健式多基地台聯合波束成型與估計技術
 
* *