|
[1] S. Xu and Y. Hua, “Optimal design of spatial source-and-relay matrices for a non-regenerative two-way MIMO relay system,” IEEE Trans. Wireless Commun., vol. 10, no. 5, pp. 1645–1655, May 2011. [2] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge, U.K.: Cambridge Univ. Press, 2012. [3] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behaviour,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062– 3080, Dec. 2004. [4] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity, Part I: System description,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1927–1938, Nov. 2003. [5] M. P. Wilson, K. Narayanan, H. D. Pfister, and A. Sprintson, “Joint physical layer coding and network coding for bidirectional relaying,” IEEE Trans. Inf. Theory, vol. 56, no. 11, Nov. 2010. [6] W. Nam, S.-Y. Chung, and Y. H. Lee, “Capacity of the Gaussian two-way relay channel to within 1/2 bit,” IEEE Trans. Inf. Theory, vol. 56, no. 11, pp. 5488–5494, Nov. 2010. [7] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interference through structured codes,” IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6463–6486, Oct. 2011. [8] S. Zhang, S. C. Liew, and P. P. Lam, “Hot topic: Physical-layer network coding,” in Proc. ACM MobiCom, Los Angeles, CA, USA, Sep. 2006, pp. 358–365. [9] B. Nazer and M. Gastpar, “Reliable physical layer network coding,” Proc. IEEE, vol. 99, no. 3, pp. 438–460, Mar. 2011. [10] P.-C. Wang, Y.-C. Huang, and K. R. Narayanan, “Asynchronous physical-layer network coding with quasi-cyclic codes,” IEEE J. Sel. Areas Commun., vol. 33, no. 2, pp. 309–322, Feb. 2015. [11] S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: Analog network coding,” in Proc. ACM SIGCOMM, Kyoto, Japan, Oct. 2007, pp. 397–408. [12] H. J. Yang, J. Chun, and A. Paulraj, “Asymptotic capacity of the separated MIMO twoway relay channel with linear precoding,” in Proc. 48th Allerton Conf. Commun., Control, Comput., Monticello, IL, USA, Sep. 2010, pp. 86–93. [13] A. Khina, Y. Kochman, and U. Erez, “Physical-layer MIMO relaying,” in Proc. IEEE ISIT, July 2011, pp. 2437–2441. [14] Y.-C. Huang, K. R. Narayanan, and T. Liu, “Coding for parallel Gaussian bi-directional relay channels: A deterministic approach,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 260–271, Jan. 2016. [15] X. Yuan, T. Yang, and I. B. Collings, “Multiple-input multiple-output two-way relaying: A space-division approach,” IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6421–6440, Oct. 2013. [16] R. Wang and M. Tao, “Joint source and relay precoding designs for MIMO two-way relaying based on MSE criterion,” IEEE Trans. Signal Process., vol. 60, no. 3, pp. 1352–1365, Mar. 2012. [17] H. Park, H. J. Yang, J. Chun, and R. Adve, “A closed-form power allocation and signal alignment for a diagonalized MIMO two-way relay channel with linear receivers,” IEEE Trans. Signal Process., vol. 60, no. 11, pp. 5948–5962, Nov. 2012. [18] Y. Rong, “Joint source and relay optimization for two-way linear non-regenerative MIMO relay communications,” IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6533–6546, Dec. 2012. [19] Y. Zhang, L. Ping, and Z. Zhang, “Low cost pre-coder design for MIMO AF two-way relay channel,” IEEE Signal Process. Lett., vol. 22, no. 9, pp. 1369–1372, Sep. 2015. [20] C.-L. Wang, J.-Y. Chen, and Y.-H. Peng, “Relay precoder designs for two-way amplifyand-forward MIMO relay systems: An eigenmode-selection approach,” IEEE Trans. Wireless Commun., vol. 15, no. 7, pp. 5127–5137, Jul. 2016. [21] Y. Shi, Z. Zhang, and L. Qiu, “Joint source/relay precoding designs in MIMO two-way AF relay systems with MMSE-SIC receiver,” in Proc. IEEE Wireless Commun. Netw. (WCNC), Shanghai, China, Apr. 2013, pp. 2733–2738. [22] R. Budhiraja and B. Ramamurthi, “Joint transceiver design for QoS-constrained MIMO two-way non-regenerative relaying using geometric programming,” IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3453–3465, May 2016. [23] M. Chiang, Geometric Programming for Communication Systems. Boston, MA, USA: Now Publishers Inc., 2005. [24] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, A Tutorial on Geometric Programming. New York, NY, USA: Springer, 2007. [25] M. Chiang, C. W. Tan, D. P. Palomar, D. O’neill, and D. Julian, “Power control by geometric programming,” IEEE Transactions on Wireless Communications, vol. 6, no. 7, pp. 2640–2651, Jul. 2007. [26] Y. Jiang, W. W. Hager, and J. Li, “The generalized triangular decomposition,” Mathematics of Computation, vol. 77, no. 262, pp. 1037–1056, Apr. 2008. [27] A. Khina, Y. Kochman, and U. Erez, “Joint unitary triangularization for MIMO networks,”IEEE Trans. Signal Process., vol. 60, no. 1, pp. 326–336, Jan. 2012. [28] A. Khina, I. Livni, A. Hitron, and U. Erez, “Joint unitary triangularization for Gaussian multi-user MIMO networks,” IEEE Trans. Inf. Theory, vol. 61, no. 5, pp. 2662–2692, May 2015. [29] C. F. Van Loan, “Generalizing the singular value decomposition,” SIAM J. Numer. Anal., vol. 13, no. 1, pp. 76–83, 1976. [30] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD, USA: Johns Hopkins University Press, 1996. [31] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 3rd ed. New York, NY, USA: Springer, 2002. [32] S. H. Friedberg, A. J. Insel, and . E. Spence, Linear Algebra, 4th ed. NJ, USA: Printeice Hall, 2003. [33] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge, U.K.: Cambridge Univ. Press, 2005. [34] T. M. Cover and J. A. Thomas, Elements of Information Theory. Hobokon, NJ, USA: Wiley, 1991. [35] J. G. Proakis and M. Salehi, Digital Communications, 5th Edition. New York, NY, USA: McGraw-Hill, 2007. [36] Y. Jiang, W. Hager, and J. Li, “The geometric mean decompostion,” Linear Algebra Its Appl., vol. 396, pp. 373–384, Feb. 2005. [37] C.-C. Weng, C.-Y. Chen, and P. P. Vaidyanathan, “Generalized triangular decomposition in transform coding,” IEEE Trans. Signal Process., vol. 58, no. 2, pp. 566–574, Feb. 2010. [38] L. Dykes and L. Reichel, “Simplified GSVD computations for the solution of linear discrete ill-posed problems,” J. Comput. Appl. Math., vol. 255, pp. 15–27, Jan. 2014. [39] R. J. Duffin, E. L. Peterson, and C. Zener, Geometric programming-Thoery and Application. Hoboken, NJ, USA: Wiley, 1967. |