帳號:guest(18.225.54.85)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭凱地
作者(外文):Hsiao, Kai-Di.
論文名稱(中文):多輸入多輸出雙向放大轉送中繼系統之預編碼器設計
論文名稱(外文):Precoder Designs for MIMO Two-Way Amplify-and-Forward Relay Systems
指導教授(中文):王晉良
指導教授(外文):Wang, Chin-Liang
口試委員(中文):陳永芳
黃昱智
古聖如
口試委員(外文):Chen, Yung-Fang
Huang, Yu-Chih
Ku, Sheng-Ju
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:107064504
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:82
中文關鍵詞:amplify-and-forwardmultiple-input multiple-outputprecoder designssuccessive interference cancellationtwo-way relay systemsgeneralized singular valuesgeometric programmingweighted arithmetic-geometric mean inequalitygradient search algorithm
外文關鍵詞:放大和轉送多輸入多輸出預編碼器設計連續干擾消除雙向中繼系統廣義奇異值幾何規劃加權算術幾何不等式梯度搜尋演算法
相關次數:
  • 推薦推薦:0
  • 點閱點閱:264
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文探討多輸入多輸出(MIMO)雙向放大轉送中繼系統之預編碼器設計,其中訊源節點採用連續干擾消除(SIC)技術來解出訊號。我們提出一個新的聯合訊源與中繼預編碼器設計方法,以三角化各訊源至目標的等效通道,並發展一SIC解碼器來還原所要的訊號。所設計的預編碼器可將MIMO雙向中繼通道轉換為兩組平行的純量通道(一個方向一組),以便可直接使用現有的純量通道編碼技術。我們也分別針對無傳送速率限制情況與有傳送速率限制情況探討預編碼器之最佳化設計問題,以最大化兩個訊源的傳送速率總和;每一最佳化的問題可先近似為一個幾何規劃的對偶問題,然後再依據加權算術幾何不等式性質和/或梯度搜尋演算法求解。我們進一步處理節點間和天線間的功率分配問題,並經由解出一個幾何規劃的對偶問題而得到最佳功率分配參數,來最大化傳送速率總和。在無傳送速率限制條件下,我們所提出的預編碼器設計方法較之現有相關的迭代式設計作法,具有明顯較低的運算複雜度,但可達到近似的傳送速率總和;當考量傳送速率限制條件時,所設計之聯合訊源與中繼預編碼器可提供給兩個訊源節點足夠的傳送速率,但相較於無傳送速率限制條件下所設計的預編碼器,具有較低的傳送速率總和。
This thesis investigates precoder designs for multiple-input multiple-output (MIMO) two-way relay systems, where amplify-and-forward is adopted at the relay node and successive interference cancellation (SIC) is used at the source nodes. A new design methodology of joint source and relay precoders is proposed for triangularizing the source-destination effective channels, and an SIC decoder is exploited to recover the desired signals. The resulting joint precoders are able to transform MIMO two-way relay channels into two sets of parallel scalar channels, one for each direction, so that existing channel codes for scalar channels can be directly applied. Optimal precoder designs for sum-rate maximization are also considered for situations without rate constraints as well as for those with rate constraints. Each of the optimization problems is first approximated as a dual problem of geometric programming, and then a solution is derived by applying the property of weighted arithmetic-geometric mean inequality and/or a gradient search algorithm. Power allocation issues among nodes and antennas are further dealt with for the developed precoders to enhance the system performance. The optimal power allocation parameters for sum-rate maximization are determined by solving another dual problem of geometric programming. Without considering rate constraints, the proposed design methodology has much less computational complexity than a related iterative design method in finding joint source and relay precoders to achieve a similar sum rate. When rate constraints are considered, the designed joint source and relay precoders are able to offer enough rates for both source nodes, but have degraded sum-rate performance as compared with those designed under no rate constraints.
CONTENTS
Abstract i
CONTENTS ii
LIST OF FIGURES iv
LIST OF TABLES vii
I. Introduction 1
II. System Models 6
III. Joint GTD Precoder Designs with Equal Power Allocation and Without Rate Constraints 10
A. Joint GTD 10
B. The Proposed Family of Precoding Schemes 14
C. Noise Prediction 21
D. Design Examples 22
E. Complexity Analysis of the Design Examples 25
IV. Optimal Power Allocation for Sum-Rate Maximization of the Precoder Designs 28
A. Power Allocation Problem 29
B. Solution to the Power Allocation Problem 31
V. Joint GTD Precoder Designs for Sum-Rate Maximization with Rate Constraints 39
A. The Case of Equal Power Allocation 39
B. The Case of Optimal Power Allocation 42
VI. Simulation Results 45
A. Simulation Results Without Rate Constraints 45
B. Simulation Results with Rate Constraints 53
VII. Conclusion 66
Appendix A: Investigate the Optimal Choice of Precoder Design with Equal Power Allocation and Without Rate Constraints 67
A. Problem Statement 67
B. Weighted Arithmetic-Geometric Mean Inequality 68
Appendix B: A Lemma 71
Appendix C: An Example for Geometric Programming Problem 72
Appendix D: The Region of a Concave Function 75
References 79

[1] S. Xu and Y. Hua, “Optimal design of spatial source-and-relay matrices for a non-regenerative two-way MIMO relay system,” IEEE Trans. Wireless Commun., vol. 10, no. 5, pp. 1645–1655, May 2011.
[2] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge, U.K.: Cambridge Univ. Press, 2012.
[3] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behaviour,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062–
3080, Dec. 2004.
[4] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity, Part I: System description,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1927–1938, Nov. 2003.
[5] M. P. Wilson, K. Narayanan, H. D. Pfister, and A. Sprintson, “Joint physical layer coding and network coding for bidirectional relaying,” IEEE Trans. Inf. Theory, vol. 56, no. 11, Nov. 2010.
[6] W. Nam, S.-Y. Chung, and Y. H. Lee, “Capacity of the Gaussian two-way relay channel to within 1/2 bit,” IEEE Trans. Inf. Theory, vol. 56, no. 11, pp. 5488–5494, Nov. 2010.
[7] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interference through structured codes,” IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6463–6486, Oct. 2011.
[8] S. Zhang, S. C. Liew, and P. P. Lam, “Hot topic: Physical-layer network coding,” in Proc. ACM MobiCom, Los Angeles, CA, USA, Sep. 2006, pp. 358–365.
[9] B. Nazer and M. Gastpar, “Reliable physical layer network coding,” Proc. IEEE, vol. 99, no. 3, pp. 438–460, Mar. 2011.
[10] P.-C. Wang, Y.-C. Huang, and K. R. Narayanan, “Asynchronous physical-layer network coding with quasi-cyclic codes,” IEEE J. Sel. Areas Commun., vol. 33, no. 2, pp. 309–322, Feb. 2015.
[11] S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: Analog network coding,” in Proc. ACM SIGCOMM, Kyoto, Japan, Oct. 2007, pp. 397–408.
[12] H. J. Yang, J. Chun, and A. Paulraj, “Asymptotic capacity of the separated MIMO twoway relay channel with linear precoding,” in Proc. 48th Allerton Conf. Commun., Control, Comput., Monticello, IL, USA, Sep. 2010, pp. 86–93.
[13] A. Khina, Y. Kochman, and U. Erez, “Physical-layer MIMO relaying,” in Proc. IEEE ISIT, July 2011, pp. 2437–2441.
[14] Y.-C. Huang, K. R. Narayanan, and T. Liu, “Coding for parallel Gaussian bi-directional relay channels: A deterministic approach,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 260–271, Jan. 2016.
[15] X. Yuan, T. Yang, and I. B. Collings, “Multiple-input multiple-output two-way relaying: A space-division approach,” IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6421–6440, Oct. 2013.
[16] R. Wang and M. Tao, “Joint source and relay precoding designs for MIMO two-way relaying based on MSE criterion,” IEEE Trans. Signal Process., vol. 60, no. 3, pp. 1352–1365, Mar. 2012.
[17] H. Park, H. J. Yang, J. Chun, and R. Adve, “A closed-form power allocation and signal alignment for a diagonalized MIMO two-way relay channel with linear receivers,” IEEE Trans. Signal Process., vol. 60, no. 11, pp. 5948–5962, Nov. 2012.
[18] Y. Rong, “Joint source and relay optimization for two-way linear non-regenerative MIMO relay communications,” IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6533–6546, Dec. 2012.
[19] Y. Zhang, L. Ping, and Z. Zhang, “Low cost pre-coder design for MIMO AF two-way relay channel,” IEEE Signal Process. Lett., vol. 22, no. 9, pp. 1369–1372, Sep. 2015.
[20] C.-L. Wang, J.-Y. Chen, and Y.-H. Peng, “Relay precoder designs for two-way amplifyand-forward MIMO relay systems: An eigenmode-selection approach,” IEEE Trans. Wireless Commun., vol. 15, no. 7, pp. 5127–5137, Jul. 2016.
[21] Y. Shi, Z. Zhang, and L. Qiu, “Joint source/relay precoding designs in MIMO two-way AF relay systems with MMSE-SIC receiver,” in Proc. IEEE Wireless Commun. Netw. (WCNC),
Shanghai, China, Apr. 2013, pp. 2733–2738.
[22] R. Budhiraja and B. Ramamurthi, “Joint transceiver design for QoS-constrained MIMO two-way non-regenerative relaying using geometric programming,” IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3453–3465, May 2016.
[23] M. Chiang, Geometric Programming for Communication Systems. Boston, MA, USA: Now Publishers Inc., 2005.
[24] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, A Tutorial on Geometric Programming. New York, NY, USA: Springer, 2007.
[25] M. Chiang, C. W. Tan, D. P. Palomar, D. O’neill, and D. Julian, “Power control by geometric programming,” IEEE Transactions on Wireless Communications, vol. 6, no. 7, pp. 2640–2651, Jul. 2007.
[26] Y. Jiang, W. W. Hager, and J. Li, “The generalized triangular decomposition,” Mathematics of Computation, vol. 77, no. 262, pp. 1037–1056, Apr. 2008.
[27] A. Khina, Y. Kochman, and U. Erez, “Joint unitary triangularization for MIMO networks,”IEEE Trans. Signal Process., vol. 60, no. 1, pp. 326–336, Jan. 2012.
[28] A. Khina, I. Livni, A. Hitron, and U. Erez, “Joint unitary triangularization for Gaussian multi-user MIMO networks,” IEEE Trans. Inf. Theory, vol. 61, no. 5, pp. 2662–2692, May 2015.
[29] C. F. Van Loan, “Generalizing the singular value decomposition,” SIAM J. Numer. Anal., vol. 13, no. 1, pp. 76–83, 1976.
[30] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD, USA: Johns Hopkins University Press, 1996.
[31] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 3rd ed. New York, NY, USA: Springer, 2002.
[32] S. H. Friedberg, A. J. Insel, and . E. Spence, Linear Algebra, 4th ed. NJ, USA: Printeice Hall, 2003.
[33] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge, U.K.: Cambridge Univ. Press, 2005.
[34] T. M. Cover and J. A. Thomas, Elements of Information Theory. Hobokon, NJ, USA: Wiley, 1991.
[35] J. G. Proakis and M. Salehi, Digital Communications, 5th Edition. New York, NY, USA: McGraw-Hill, 2007.
[36] Y. Jiang, W. Hager, and J. Li, “The geometric mean decompostion,” Linear Algebra Its Appl., vol. 396, pp. 373–384, Feb. 2005.
[37] C.-C. Weng, C.-Y. Chen, and P. P. Vaidyanathan, “Generalized triangular decomposition in transform coding,” IEEE Trans. Signal Process., vol. 58, no. 2, pp. 566–574, Feb. 2010.
[38] L. Dykes and L. Reichel, “Simplified GSVD computations for the solution of linear discrete ill-posed problems,” J. Comput. Appl. Math., vol. 255, pp. 15–27, Jan. 2014.
[39] R. J. Duffin, E. L. Peterson, and C. Zener, Geometric programming-Thoery and Application. Hoboken, NJ, USA: Wiley, 1967.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *