|
[1] W. Li, Y. Chiang, J. Tsai, H. Yang, J. Cheng and T. Huang, "60-GHz 5-bit Phase Shifter With Integrated VGA Phase-Error Compensation," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1224-1235, March 2013, doi: 10.1109/TMTT.2013.2244226. [2] U. Kodak and G. M. Rebeiz, "Bi-directional flip-chip 28 GHz phased-array core-chip in 45nm CMOS SOI for high-efficiency high-linearity 5G systems," 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2017, pp. 61-64, doi: 10.1109/RFIC.2017.7969017. [3] F. Meng, K. Ma, K. S. Yeo and S. Xu, "A 57-to-64-GHz 0.094-mm2 5-bit Passive Phase Shifter in 65-nm CMOS," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 5, pp. 1917-1925, May 2016, doi: 10.1109/TVLSI.2015.2469158. [4] J. -H. Tsai, Y. -L. Tung and Y. -H. Lin, "A 27–42-GHz Low Phase Error 5-Bit Passive Phase Shifter in 65-nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 9, pp. 900-903, Sept. 2020, doi: 10.1109/LMWC.2020.3012459. [5] F. Ellinger, U. Jörges, U. Mayer, R. Eickhoff , “Analysis and compensation of phase variations versus gain in amplifiers verified by SiGe HBT cascode RFIC,” IEEE Transactions on Microwave Theory and Techiqued.Aug.2009. [6] Q. Zhang, C. Zhao, Y. Yu, H. Liu, Y. Wu and K. Kang, "A Ka-Band CMOS Variable Gain Amplifier with High Gain Resolution and Low Phase Variation," 2020 IEEE Asia-Pacific Microwave Conference (APMC), 2020, pp. 275-277, doi: 10.1109/APMC47863.2020.9331365. [7] J. Tsai and C. Lin, "A 40-GHz 4-Bit Digitally Controlled VGA With Low Phase Variation Using 65-nm CMOS Process," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 11, pp. 729-732, Nov. 2019, doi: 10.1109/LMWC.2019.2942013. [8] C. W. Byeon, S. H. Lee, J. H. Lee and J. H. Son, "A $Ka$ -Band Variable-Gain Amplifier With Low OP1dB Variation for 5G Applications," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 11, pp. 722-724, Nov. 2019, doi: 10.1109/LMWC.2019.2940318. [9] B. Sadhu, J. F. Bulzacchelli and A. Valdes-Garcia, "A 28GHz SiGe BiCMOS phase invariant VGA," 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2016, pp. 150-153, doi: 10.1109/RFIC.2016.7508273. [10] S. Mondal, R. Singh, A. I. Hussein and J. Paramesh, "A 25–30 GHz Fully-Connected Hybrid Beamforming Receiver for MIMO Communication," in IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1275-1287, May 2018, doi: 10.1109/JSSC.2018.2789402. [11] Z. Chen, H. Gao, D. Leenaerts, D. Milosevic and P. Baltus, "A 29–37 GHz BiCMOS Low-Noise Amplifier with 28.5 dB Peak Gain and 3.1-4.1 dB NF," 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2018, pp. 288-291, doi: 10.1109/RFIC.2018.8429020. [12] M. Elkholy, S. Shakib, J. Dunworth, V. Aparin and K. Entesari, "A Wideband Variable Gain LNA With High OIP3 for 5G Using 40-nm Bulk CMOS," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 1, pp. 64-66, Jan. 2018, doi: 10.1109/LMWC.2017.2779832. [13] D. Manente, F. Padovan, D. Seebacher, M. Bassi and A. Bevilacqua, "A 28-GHz Stacked Power Amplifier with 20.7-dBm Output P1dB in 28-nm Bulk CMOS," in IEEE Solid-State Circuits Letters, vol. 3, pp. 170-173, 2020, doi: 10.1109/LSSC.2020.3009973. [14] C. Yu, J. Feng and D. Zhao, "A 28-GHz CMOS Broadband Single-Path Power Amplifier with 17.4-dBm P1dB for 5G Phased-Array," ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC), 2018, pp. 38-41, doi: 10.1109/ESSCIRC.2018.8494246. [15] Y. Zhang and P. Reynaert, "A high-efficiency linear power amplifier for 28GHz mobile communications in 40nm CMOS," 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2017, pp. 33-36, doi: 10.1109/RFIC.2017.7969010. [16] C. -N. Chen et al., "38-GHz Phased Array Transmitter and Receiver Based on Scalable Phased Array Modules With Endfire Antenna Arrays for 5G MMW Data Links," in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 980-999, Jan. 2021, doi: 10.1109/TMTT.2020.3035091. [17] K. Kolb et al., "A 28 GHz Highly Accurate Phase- and Gain-Steering Transmitter Frontend for 5G Phased-Array Applications," 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), 2020, pp. 432-435, doi: 10.1109/MWSCAS48704.2020.9184577. [18] K. Kibaroglu, M. Sayginer and G. M. Rebeiz, "A Low-Cost Scalable 32-Element 28-GHz Phased Array Transceiver for 5G Communication Links Based on a $2\times 2$ Beamformer Flip-Chip Unit Cell," in IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1260-1274, May 2018, doi: 10.1109/JSSC.2018.2791481. [19] K. Kibaroglu, M. Sayginer and G. M. Rebeiz, "A quad-core 28–32 GHz transmit/receive 5G phased-array IC with flip-chip packaging in SiGe BiCMOS," 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 1892-1894, doi: 10.1109/MWSYM.2017.8059027.
|