帳號:guest(3.149.229.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭宇維
作者(外文):Cheng, Yu-Wei
論文名稱(中文):應用於第五代通訊系統之毫米波發射機前端電路設計
論文名稱(外文):Design of Millimeter-Wave Transmitter Front-End for 5G Communications
指導教授(中文):劉怡君
指導教授(外文):Liu, Yi-Chun
口試委員(中文):徐碩鴻
李俊興
口試委員(外文):Hsu, Shuo-Hung
Li, Chun-Hsing
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:107063571
出版年(民國):110
畢業學年度:110
語文別:中文
論文頁數:100
中文關鍵詞:天線陣列開關式相移器可調控增益放大器低雜訊放大器功率放大器毫米波發射機第五代通訊系統
外文關鍵詞:phased array antennaswitch-type phase shiftervariable gain amplifierlow-noise amplifierpower amplifier5G communications
相關次數:
  • 推薦推薦:0
  • 點閱點閱:175
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現代通訊系統不斷追求更快的傳輸速度,由著名的雪農理論(Shannon’s Theorem)了解頻寬、訊雜比與通道容量的關係,為了要提高傳輸速度,第五代及未來的通訊系統將要使用到毫米波(mm-Wave)或是更高頻率的頻段。本論文完成應用於第五代陣列無線通訊系統傳輸端之設計、模擬與量測。
由於第五代通訊系統操作於毫米波高頻頻段,空氣中傳輸的損耗相當大,導致有傳輸距離短、無法穿透固體表面等缺點,藉由陣列天線增強傳輸訊號,和波束成型技術增加等效全向輻射功率(Equivalent Isotropic Radiated Power,EIRP),使傳輸及接收端都有更好的表現。
第二章的陣列貼片天線,使用高頻PCB RT/duroid5880製作,並於毫米波天線實驗室量測,頻率28GHz時得增益12.1dBi、方向性13dBi、效率82%。
第三章的相移器為波束成型的關鍵元件,採用TSMC CMOS 90nm製程,選擇五位元設計11.25度的解析度,使用開關式方便調控及量測,NMOS扮演開關及電容的角色,實現5.35度相位誤差(Phase Error)的五位元相移器。
第四章為可調控增益放大器,採用TSMC CMOS 90nm製程,為了調控增益時有最小的相位變化,加入相位補償機制,藉由電容電感相位變化相反的特性設計,增益調控範圍為6.6dB。
第五章為傳輸端的整合,包括五位元相移器(5-bit Phase Shifter)、可調控增益放大器(Variable Gain Amplifier)、低雜訊放大器(Noise Amplifier)、功率放大器(Power Amplifier),採用TSMC CMOS 90nm製程,實現26-32.4dB增益、8.9度相位誤差、9.3dBm 1-dB壓縮點輸出功率、功率消耗120.7、面積3mm2。
Fast-growing wireless communication systems demand for extremely high-data-rate transmission. Comprehend the relationship between bandwidth, signal-to-noise ratio, and channel capacity from the famous Shannon’s Theorem. The fifth-generation and future communication systems will use millimeter wave or higher frequency bands. But high-frequency transmissions suffer from several challenges, like more vulnerable to blockage, huge path loss, etc.
Since the 5G technology operate in the millimeter-wave band, the transmission loss quite large, resulting in a very short transmission distance. Phased-array antenna with beamforming technology effectively overcome this challenge. This thesis presents a 28 GHz phased-array transmitter for 5G wireless communications.
The first 28 GHz phased-array antenna was designed and implemented in PCB RT/duroid5880, which is suitable for 5G devices. Measured in the millimeter wave antenna laboratory at NTUST. It has a gain of 12.1 dBi, a directivity of 13 dBi, and antenna efficiency of 82% at 28 GHz.
The second 28 GHz phase shifter plays an important role in beamforming technology has been designed and fabricated on TSMC 90-nm CMOS process. 5-bit switch-type phase shifter design with a resolution of 11.25 degree. The measured rms phase error of 5.3 degree, rms gain error of 2.39 dB, and insertion loss is -18±4.3 dB for all 32 states at 28 GHz. The third 28 GHz variable gain amplifier has been designed and fabricated on TSMC 90-nm CMOS process. A phase compensation circuit is added to minimize phase variation during gain control.
The last work in this thesis integrates the work of the previous chapters and presents a 28 GHz phased-array transmitter, including 5-bit phase shifter, variable gain amplifier, low noise amplifier, and power amplifier in TSMC 90-nm CMOS technology. The transmitter has phase scan and gain control capabilities, which is applicable to 5G micro base stations. The measured gain is 26-32.4 dB, rms phase error of 8.9 degree at 28 GHz. At 1-dB compression point, OP1dB is 9.3 dBm. The power consumption is 120 mW .
摘要 ii
ABSTRACT iii
目錄 v
圖片清單 ix
表格清單 xiv
Chapter 1 緒論 1
1.1. 毫米波頻段與應用 1
1.1.1 毫米波頻段 1
1.1.2 毫米波應用 1
1.2. 波束成型與相位陣列天線系統 2
1.3. 5G通訊 2
1.4. 研究動機及背景 3
Chapter 2 高增益天線陣列設計 4
2.1. 微帶天線 4
2.1.1 微帶天線特性 4
2.1.2 設計原理 4
2.1.3 天線陣列理論 6
2.2. 28-GHz微帶天線 8
2.3. 量測結果 13
2.4. 結論 15
Chapter 3 28-GHz 五位元開關式相移器 17
3.1. 介紹 17
3.1.1 相移器應用 17
3.1.2 相移器的種類 17
3.1.2.1 相量調變式相移器(vector modulation phase shifter) 18
3.1.2.2 分佈式相移器(distributed phase shifter) 19
3.1.2.3 反射式相移器(Reflective-type phase shifter) 19
3.2. 相移器的重要參數 20
3.2.1 均方根相位誤差(RMS Phase Error) 20
3.2.2 均方根增益誤差(RMS Gain Error) 21
3.3. 28-GHz 5-bit 開關式相移器 21
3.3.1 開關式相移器 21
3.3.2 開關式相移器架構 22
3.4. 模擬及量測結果 33
3.4.1 模擬結果 33
3.4.2 量測結果 35
3.5. 結論 39
Chapter 4 28-GHz低相位變化可調增益放大器 41
4.1. 可調控增益放大器介紹 41
4.1.1 介紹 41
4.1.2 可調增益放大器 42
4.2. 設計內容 43
4.2.1 原理 43
4.2.2 設計分析 46
4.2.3 可調控增益放大器相位分析 47
4.2.4 相位補償電感 51
4.3. 模擬與量測 53
4.3.1 模擬結果 54
4.3.2 量測結果 55
4.4. 結論 58
4.4.1 文獻比較 59
Chapter 5 矽光子光載毫米波系統傳輸端 60
5.1. 毫米波應用 60
5.2. 介紹 63
5.2.1 增益(Gain) 63
5.2.2 效率(Efficiency) 63
5.2.3 雜訊因子(Noise Figure) 64
5.2.4 線性度 (Linearity) 65
5.2.5 穩定度(Stability) 68
5.3. 應用於矽光子毫米波28-GHz傳輸端電路 69
5.3.1 28GHz 低雜訊放大器 70
5.3.2 28GHz五位元相移器 76
5.3.3 28GHz相位補償之可調控增益放大器 76
5.3.4 28-GHz可適性偏壓功率放大器 77
5.4. 模擬及量測結果 85
5.4.1 模擬結果 85
5.4.2 量測結果 89
5.5. 結論 93
5.5.1 文獻比較 96
Chapter 6 結論 97
References 98
[1] W. Li, Y. Chiang, J. Tsai, H. Yang, J. Cheng and T. Huang, "60-GHz 5-bit Phase Shifter With Integrated VGA Phase-Error Compensation," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1224-1235, March 2013, doi: 10.1109/TMTT.2013.2244226.
[2] U. Kodak and G. M. Rebeiz, "Bi-directional flip-chip 28 GHz phased-array core-chip in 45nm CMOS SOI for high-efficiency high-linearity 5G systems," 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2017, pp. 61-64, doi: 10.1109/RFIC.2017.7969017.
[3] F. Meng, K. Ma, K. S. Yeo and S. Xu, "A 57-to-64-GHz 0.094-mm2 5-bit Passive Phase Shifter in 65-nm CMOS," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 5, pp. 1917-1925, May 2016, doi: 10.1109/TVLSI.2015.2469158.
[4] J. -H. Tsai, Y. -L. Tung and Y. -H. Lin, "A 27–42-GHz Low Phase Error 5-Bit Passive Phase Shifter in 65-nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 9, pp. 900-903, Sept. 2020, doi: 10.1109/LMWC.2020.3012459.
[5] F. Ellinger, U. Jörges, U. Mayer, R. Eickhoff , “Analysis and compensation of phase variations versus gain in amplifiers verified by SiGe HBT cascode RFIC,” IEEE Transactions on Microwave Theory and Techiqued.Aug.2009.
[6] Q. Zhang, C. Zhao, Y. Yu, H. Liu, Y. Wu and K. Kang, "A Ka-Band CMOS Variable Gain Amplifier with High Gain Resolution and Low Phase Variation," 2020 IEEE Asia-Pacific Microwave Conference (APMC), 2020, pp. 275-277, doi: 10.1109/APMC47863.2020.9331365.
[7] J. Tsai and C. Lin, "A 40-GHz 4-Bit Digitally Controlled VGA With Low Phase Variation Using 65-nm CMOS Process," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 11, pp. 729-732, Nov. 2019, doi: 10.1109/LMWC.2019.2942013.
[8] C. W. Byeon, S. H. Lee, J. H. Lee and J. H. Son, "A $Ka$ -Band Variable-Gain Amplifier With Low OP1dB Variation for 5G Applications," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 11, pp. 722-724, Nov. 2019, doi: 10.1109/LMWC.2019.2940318.
[9] B. Sadhu, J. F. Bulzacchelli and A. Valdes-Garcia, "A 28GHz SiGe BiCMOS phase invariant VGA," 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2016, pp. 150-153, doi: 10.1109/RFIC.2016.7508273.
[10] S. Mondal, R. Singh, A. I. Hussein and J. Paramesh, "A 25–30 GHz Fully-Connected Hybrid Beamforming Receiver for MIMO Communication," in IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1275-1287, May 2018, doi: 10.1109/JSSC.2018.2789402.
[11] Z. Chen, H. Gao, D. Leenaerts, D. Milosevic and P. Baltus, "A 29–37 GHz BiCMOS Low-Noise Amplifier with 28.5 dB Peak Gain and 3.1-4.1 dB NF," 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2018, pp. 288-291, doi: 10.1109/RFIC.2018.8429020.
[12] M. Elkholy, S. Shakib, J. Dunworth, V. Aparin and K. Entesari, "A Wideband Variable Gain LNA With High OIP3 for 5G Using 40-nm Bulk CMOS," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 1, pp. 64-66, Jan. 2018, doi: 10.1109/LMWC.2017.2779832.
[13] D. Manente, F. Padovan, D. Seebacher, M. Bassi and A. Bevilacqua, "A 28-GHz Stacked Power Amplifier with 20.7-dBm Output P1dB in 28-nm Bulk CMOS," in IEEE Solid-State Circuits Letters, vol. 3, pp. 170-173, 2020, doi: 10.1109/LSSC.2020.3009973.
[14] C. Yu, J. Feng and D. Zhao, "A 28-GHz CMOS Broadband Single-Path Power Amplifier with 17.4-dBm P1dB for 5G Phased-Array," ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC), 2018, pp. 38-41, doi: 10.1109/ESSCIRC.2018.8494246.
[15] Y. Zhang and P. Reynaert, "A high-efficiency linear power amplifier for 28GHz mobile communications in 40nm CMOS," 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2017, pp. 33-36, doi: 10.1109/RFIC.2017.7969010.
[16] C. -N. Chen et al., "38-GHz Phased Array Transmitter and Receiver Based on Scalable Phased Array Modules With Endfire Antenna Arrays for 5G MMW Data Links," in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 980-999, Jan. 2021, doi: 10.1109/TMTT.2020.3035091.
[17] K. Kolb et al., "A 28 GHz Highly Accurate Phase- and Gain-Steering Transmitter Frontend for 5G Phased-Array Applications," 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), 2020, pp. 432-435, doi: 10.1109/MWSCAS48704.2020.9184577.
[18] K. Kibaroglu, M. Sayginer and G. M. Rebeiz, "A Low-Cost Scalable 32-Element 28-GHz Phased Array Transceiver for 5G Communication Links Based on a $2\times 2$ Beamformer Flip-Chip Unit Cell," in IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1260-1274, May 2018, doi: 10.1109/JSSC.2018.2791481.
[19] K. Kibaroglu, M. Sayginer and G. M. Rebeiz, "A quad-core 28–32 GHz transmit/receive 5G phased-array IC with flip-chip packaging in SiGe BiCMOS," 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 1892-1894, doi: 10.1109/MWSYM.2017.8059027.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *