帳號:guest(18.217.209.61)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳冠儒
作者(外文):Wu, Kuan-Ju
論文名稱(中文):單量子井發光高電子遷移率電晶體之研究
論文名稱(外文):Study on Light Emitting High Electron Mobility Transistor with Single Quantum Well
指導教授(中文):黃智方
指導教授(外文):Huang, Chih-Fang
口試委員(中文):吳育任
楊尚樺
口試委員(外文):Wu, Yuh-Renn
Yang, Shang-Hua
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:107063569
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:71
中文關鍵詞:氮化鎵氮化銦鎵量子井發光高電子遷移率電晶體增強型
外文關鍵詞:GaNInGaNSQWLE-HEMTE-mode
相關次數:
  • 推薦推薦:0
  • 點閱點閱:95
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文著重於單量子井發光高電子遷移率電晶體(light emitting high electron mobility transistor, LE­HEMT)之研究,藉由在二維電子氣(two dimensional electron gas, 2DEG)通道下方加入一層氮化銦鎵量子井(InGaN quantum well)結構來改善元件內部量子效率以及調變發光波長。
本次實驗成功製作出單量子井發光高電子遷移率電晶體。其閾值 電壓(threshold voltage, Vth)為 0.5 V,片電阻(sheet resistance, Rsh)為 1875.9 Ω/□。在閘極電壓為 4 V 時,導通電阻(specific on­state resistance, Ron,sp)和飽和電流(saturation current, Isat)分別為 3.31 mΩ­cm2 和 162.88 mA/ mm。
在發光方面,光輸出功率(light output power, LOP)最高來到 4 μW, 為無量子井結構的兩倍。在閘極電壓為 4 V 且汲極電流為 32 mA 時,出現 兩個主要的發光波長,其中一個為波長 365 nm 的紫外光,另一個為波長 528 nm 的藍綠光,並可透過閘極電壓、汲極電流來控制發光強度。
In this thesis, we focus on the sudy of LE­HEMT(light emitting high electron mobility transistor)with single quantum well. An InGaN quantum well layer is added under the 2DEG(two dimensional electron gas)channel in the epitaxial structures to improve the internal quantum efficiency and adjust the wavelength.
From the experiment, LE­HEMT with single quantum well was successfully fabricated. The Vth(threshold voltage)was 0.5 V, and Rsh(sheet resistance) was 1875.9 Ω/□. When the gate voltage was 4 V, the Ron,sp(specific on­state resistance)and Isat(saturation current)were 3.31 mΩ­cm2 and 162.88 mA/mm respectively.
In the aspect of light emitting, the largest LOP(light output power)was 4 μW, which was twice than that of the strucutre without quantum well. There were two peaks at different wavelengths when gate voltage was 4 V and drain current was 32 mA. One was UV(ultraviolet)light at 365 nm, and the other was blue­ green light at 528 nm. In addition, the emitting intensity could be modulated by the gate voltage and the drain current.
摘要.................................................................................... i
Abstract................................................................................ ii
目錄.................................................................................... iii
第一章序論........................................................................ 1
1.1 前言........................................................................ 1
1.2 文獻回顧.................................................................. 3
1.2.1 氮化鎵/氮化鋁鎵異質結構.................................... 3
1.2.2 氮化鎵發光二極體............................................. 4
1.2.3 電晶體與二極體單片集成.................................... 6
1.3 研究方向.................................................................. 8
1.4 論文架構.................................................................. 8
第二章原理簡介與關鍵製程................................................... 9
2.1 氮化鎵材料特性......................................................... 9
2.1.1 自發性極化與壓電極化....................................... 9
2.1.2 氮化鎵/氮化鋁鎵異質結構.................................... 10
2.2 高電子遷移率電晶體................................................... 12
2.2.1 空乏型元件...................................................... 12
2.2.2 增強型元件...................................................... 12
2.3 發光元件與量測......................................................... 15
2.3.1 發光元件......................................................... 15
2.3.2 發光量測......................................................... 18
2.4 發光高電子遷移率電晶體............................................. 22
2.5 關鍵製程.................................................................. 23
2.5.1 p 型氮化鎵歐姆接觸(p-GaN ohmic contact) ........... 23
2.5.2 p 型氮化鎵自我對準蝕刻製程(p-GaN self-aligned etching process)......................................................... 24
第三章元件結構及製作流程................................................... 26
3.1 磊晶結構.................................................................. 26
3.1.1 公司A之磊晶結構............................................. 27
3.1.2 公司B 之磊晶結構............................................. 29
3.2 元件製作流程............................................................ 30
3.2.1 對準記號蝕刻(MASK 1) .................................. 31
3.2.2 元件隔離(MASK 2) ........................................ 33
3.2.3 表面處理與氧化銦錫沉積.................................... 35
3.2.4 氧化銦錫濕式蝕刻(MASK 3) ............................ 36
3.2.5 p 型氮化鎵乾式蝕刻(MASK 3) .......................... 38
3.2.6 n 型歐姆接處金屬(MASK 4) ............................. 39
3.2.7 襯墊金屬(MASK 5、MASK 6)........................... 40
3.3 元件尺寸與俯視圖...................................................... 42
第四章量測結果與分析......................................................... 43
4.1 公司A 結構量測結果................................................... 43
4.1.1 公司A 第一版磊晶結構之電性量測........................ 43
4.1.2 公司A 第二版磊晶結構之電性量測........................ 46
4.1.3 公司A 第一版磊晶結構之結構分析與發光量測......... 47
4.2 公司B 結構量測結果................................................... 52
4.2.1 TEM 結構分析.................................................. 52
4.2.2 TLM 測試結構.................................................. 54
4.2.3 閘極源極二極體............................................... 57
4.2.4 E-mode HEMT 直流電性量測................................ 58
4.2.5 LE-HEMT直流電性量測..................................... 61
4.2.6 發光量測......................................................... 64
第五章結論與未來展望......................................................... 68
參考文獻.............................................................................. 69
[1] L. Spaziani and L. Lu, “Silicon, GaN and SiC: There’s room for all: An application space overview of device considerations,” in 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), May 2018, pp. 8–11.
[2] A. W. M. Zuhdi, J. J. McKendry, R. K. Henderson, E. Gu, M. D. Dawson, and I. Under­ wood, “GaN based μ LED drive circuit for Visible Light Communication (VLC) with improved linearity using on­chip optical feedback,” in 2016 IEEE Region 10 Conference (TENCON), Nov. 2016, pp. 3394–3397.
[3] M. A. Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter, “Observation of a two­dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN­AlxGa1­xN heterojunctions,” Applied Physics Letters, vol. 60, no. 24, pp. 3027– 3029, Jun. 15, 1992.
[4] M. Asif Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaN­AlxGa1­xN heterojunction,” Applied Physics Letters, vol. 63, no. 9, pp. 1214–1215, Aug. 30, 1993.
[5] N.­Q. Zhang, S. Keller, G. Parish, S. Heikman, S. DenBaars, and U. Mishra, “High breakdown GaN HEMT with overlapping gate structure,” IEEE Electron Device Letters, vol. 21, no. 9, pp. 421–423, Sep. 2000.
[6] J. Liu, Y. Zhou, J. Zhu, K. Lau, and K. Chen, “AlGaN/GaN/InGaN/GaN DH­HEMTs with an InGaN notch for enhanced carrier confinement,” IEEE Electron Device Letters, vol. 27, no. 1, pp. 10–12, Jan. 2006.
[7] F. Medjdoub, J. Derluyn, K. Cheng, M. Leys, S. Degroote, D. Marcon, D. Visalli, M. Van Hove, M. Germain, and G. Borghs, “Low On­Resistance High­Breakdown Normally Off AlN/GaN/AlGaN DHFET on Si Substrate,” IEEE Electron Device Letters, vol. 31, no. 2, pp. 111–113, Feb. 2010.
[8] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P­Type Conduction in Mg­Doped GaN Treated with Low­Energy Electron Beam Irradiation (LEEBI),” Japanese Journal of Applied Physics, vol. 28, p. L2112, 12A Dec. 1989.
[9] Isamu Akasaki, Hiroshi Amano, Masahiro Kito, and Kazumasa Hiramatsu, “Photoluminescence of Mg­doped p­type GaN and electroluminescence of GaN p­n junction LED,” Journal
of Luminescence, vol. 48­49, pp. 666–670, Jan. 1, 1991.
[10] S. Nakamura, M. Senoh, and T. Mukai, “High­power InGaN/GaN double­heterostructure violet light emitting diodes,” Applied Physics Letters, vol. 62, no. 19, pp. 2390–2392, May 10, 1993.
[11] S. Nakamura, T. Mukai, and M. Senoh, “High­brightness InGaN/AlGaN double­heterostructure blue­green­light­emitting diodes,” Journal of Applied Physics, vol. 76, no. 12, pp. 8189–
8191, Dec. 15, 1994.
[12] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P­Type Mg­Doped GaN Films,” Japanese Journal of Applied Physics, vol. 31, p. L139, 2B Feb. 1992.
[13] D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez­Rizo, and K. Ohkawa, “Demonstration of low forward voltage InGaN­based red LEDs,” Applied Physics Express, vol. 13, no. 3, p. 031 001, Feb. 2020.
[14] K.H.Li,Y.F.Cheung,W.Jin,W.Y.Fu,A.T.L.Lee,S.C.Tan,S.Y.Hui,andH.W. Choi, “InGaN RGB Light­Emitting Diodes With Monolithically Integrated Photodetec­ tors for Stabilizing Color Chromaticity,” IEEE Transactions on Industrial Electronics, vol. 67, no. 6, pp. 5154–5160, Jun. 2020.
[15] Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of light­emitting diodes and power metal­oxide­semiconductor channel high­ electron­mobility transistors for light­emitting power integrated circuits in GaN on sap­ phire substrate,” Applied Physics Letters, vol. 102, no. 19, p. 192 107, May 13, 2013.
[16] C. Liu, Y. Cai, Z. Liu, J. Ma, and K. M. Lau, “Metal­interconnection­free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors,” Applied Physics Letters, vol. 106, no. 18, p. 181 110, May 4, 2015.
[17] Y. Cai, X. Zou, C. Liu, and K. M. Lau, “Voltage­Controlled GaN HEMT­LED Devices as Fast­Switching and Dimmable Light Emitters,” IEEE Electron Device Letters, vol. 39, no. 2, pp. 224–227, Feb. 2018.
[18] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polariza­ tion in undoped and doped AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 87, no. 1, pp. 334–344, Dec. 15, 1999.
[19] F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric po­ larization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 450–457, Mar. 2001.
[20] G. Greco, F. Iucolano, and F. Roccaforte, “Review of technology for normally­off HEMTs with p­GaN gate,” Materials Science in Semiconductor Processing, Wide Band Gap Semiconductors Technology for next Generation of Energy Efficient Power Electronics, vol. 78, pp. 96–106, May 1, 2018.
[21] T. Wang, D. Nakagawa, J. Wang, T. Sugahara, and S. Sakai, “Photoluminescence in­ vestigation of InGaN/GaN single quantum well and multiple quantum wells,” Applied Physics Letters, vol. 73, no. 24, pp. 3571–3573, Dec. 14, 1998.
[22] J. Xie, X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, “On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p­doped quantum well barriers,” Applied Physics Letters, vol. 93, no. 12, p. 121 107, Sep. 22, 2008.
[23] B.­C. Lin, K.­J. Chen, H.­V. Han, Y.­P. Lan, C.­H. Chiu, C.­C. Lin, M.­H. Shih, P.­T. Lee, and H.­C. Kuo, “Advantages of Blue LEDs With Graded­Composition AlGaN/GaN Superlattice EBL,” IEEE Photonics Technology Letters, vol. 25, no. 21, pp. 2062–2065, Nov. 2013.
[24] C.­C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High­Power, Low­Efficiency­Droop Semipolar (2021) Single­Quantum­Well Blue Light­Emitting Diodes,” Applied Physics Express, vol. 5, no. 6, p. 062 103, Jun. 4, 2012.
[25] Y. Zhao, S. Tanaka, C.­C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High­Power Blue­Violet Semipolar (202 ̄1 ̄) InGaN/GaN Light­Emitting Diodes with Low Efficiency Droop at 200 A/cm2̂$,” Applied Physics Express, vol. 4, no. 8, p. 082 104, Jul. 15, 2011.
[26] J. Iveland, J. S. Speck, L. Martinelli, J. Peretti, and C. C. A. Weisbuch, “Auger effect identified as main cause of efficiency droop in LEDs,” 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *