帳號:guest(3.147.48.186)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅康閔
作者(外文):Lo, Kang-Min
論文名稱(中文):4H碳化矽邏輯電路整合高壓雙離子注入與橫向擴散金氧半場效電晶體研究
論文名稱(外文):Study on Logic Circuit Integration with High-Voltage DMOS and LDMOS in 4H-SiC
指導教授(中文):黃智方
指導教授(外文):Huang, Chih-Fang
口試委員(中文):崔秉鉞
趙得勝
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:107063563
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:77
中文關鍵詞:碳化矽邏輯電路互補式金氧半電晶體空乏式金氧半電晶體
外文關鍵詞:SiCCMOS inverterD-mode inverterDMOSLDMOS
相關次數:
  • 推薦推薦:0
  • 點閱點閱:368
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
碳化矽(SiC)功率元件漸漸使用在各種功率電子應用,碳化矽二極體與金氧半場效電晶體已商業化,並且進入特定的商業市場,同時近年來試圖將碳化矽元件做單晶片整合,特別是應用在極端與惡劣環境下,碳化矽有其優勢。
本論文以4H-SiC為材料,探討1.2kV垂直型雙重離子注入金氧半場效電晶體(DMOS)在使用相同製程下整合水平型互補式金氧半場效電晶體(CMOS)邏輯電路的可能性,實驗結果顯示4H-SiC DMOS在不增加而外光罩下可以兼容整合CMOS邏輯電路,並且反向器與環型振盪器可以利用自身結構隔離耐高壓,NMOS、PMOS、CMOS、ring oscillator在175℃下特性良好,同時發現基板高壓會產生基體效應(body effect)影響PMOS與CMOS電性,但他們仍能正常操作在基板電壓800V時,ring oscillator也能操作在基板300V時,這些結果有望在4H-SiC中整合垂直型DMOS與水平型CMOS邏輯電路。
此外本論文也研究了水平型互補式金氧半導體與橫向擴散金屬氧化物半導體(LDMOS)整合在同一塊基板上,為了整合閘極驅動電路與600V功率MOSFETs,因此量測並探討低壓邏輯電路特性與高壓隔離結構的特性。
4H-silicon carbide (SiC) power components are gradually being used in various power electronic applications. SiC diodes and MOSFETs have been commercialized and entered specific commercial markets. In recent years, attempts have been made to integrate SiC components into a single chip, especially used in extreme and harsh environments where SiC has its advantages.
In this thesis 4H-SiC is used as the semiconductor material to explore possibility of integrating 1.2 kV vertical DMOS with horizontal CMOS logics with the same process technology. The experimental results show that CMOS logic circuits can be compatible and integrated with 4H-SiC DMOS without increasing the number of mask layers, and the inverter and ring oscillator can withstand high voltage using self-isolation. NMOS, PMOS, CMOS, and ring oscillator all have functional characteristics at 175°C. It is found that high substrate voltage will produce body effects that affect the electrical properties of PMOS and CMOS, but they can still operate at a substrate voltage of 800V. The ring oscillator can also operate at a substrate voltage of 300V. These results are promising for integration of vertical DMOS and CMOS logics in 4H-SiC.
In addition, this paper also studies the integration of CMOS and LDMOS on the same substrate in order to realize a gate driver circuit for 600 V power MOSFETs. The characteristics of low-voltage circuit operation and high-voltage isolation structures are measured and discussed.
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 序論 9
1.1 前言 9
1.2 碳化矽材料結構 10
1.3 文獻回顧 11
1.3.1 SiC CMOS閘極驅動電路 11
1.3.2 HSPICE BSIM4、BSIM3V3模型 12
1.3.3 Floating guard ring 14
1.3.4 基板的偏壓效應 15
1.4 論文動機與大綱 17
第二章 邏輯電路與LDMOS使用相同基板整合 18
2.1 實驗動機 18
2.2 實驗條件 19
2.2.1 基板結構 19
2.2.2 元件結構 19
2.3 模擬結果 21
2.3.1 前導實驗數據 21
2.3.2 SPICE元件模型建立 22
2.3.3 HSPICE SiC CMOS logic模擬 30
2.3.4 HSPICE SiC N-logic模擬 35
2.4 量測結果與分析 41
2.4.1 製程流程變異 41
2.4.2 I-V curve 42
2.4.3 邏輯電路特性 47
2.4.4 高壓隔離結構結果與討論 53
第三章 水平型CMOS邏輯電路與垂直型DMOS使用相同製程下整合 57
3.1 元件結構與設計 57
3.2 量測結果與分析 58
3.2.1 MOSFETs I-V curve 58
3.2.2 邏輯電路特性 61
3.2.3 基體效應對元件特性量測 69
第四章 結論及未來展望 75
參考文獻 76
[1] 顏誠廷, 碳化矽功率半導體元件,《電子資訊》功率電子專刊, 2014.
[2] R. Cheung, "Silicon Carbide Microelectromechanical Systems for Harsh Environments," Imperial College Press, 2006.
[3] R. Powell and L.B. Rowland, "SiC Material-Progress Status and Potential Roadblocks," IEEE Proc., Vol. 60, pp. 942-955, 2002
[4] T. P. Chow and R. Tyagi, "Wide Bandgap Compound Semiconductors for Superior High-Voltage Unipolar Power Devices," IEEE Trans. Electron Devices, Vol. 41, No. 8, pp. 1481–1483, Aug. 1994.
[5] M. Rogalla, "Particle Detectors Based on Semi-Insulating Silicon Carbide," Nucl. Phys. B (Proc. Suppl.), vol. 78, p. 516, 1999.
[6] F. Nava, P. Vanni, C. Lanzieri, and C. Canali, "Epitaxial Silicon Carbide Charge Particle Detectors," Nucl. Instrum. Methods Phys. Res. A, vol. 437, pp. 354–358, 1999.
[7] M. Bruzzi, F. Hartjes, S. Lagomarsino, F. Nava, S. Sciortino, and P. Vanni, "Recent Results on Particle Detection With Epitaxial SiC Schottky Diodes," in Proc. IEEE Nuclear Science Symp., Nov. 2002, pp. 14–17
[8] P. G. Neudeck, R. S. Okojie, and L.-Y. Chen, "High-temperature electronics - a role for wide bandgap semiconductors?," Proc. IEEE, vol. 90, no. 6, pp. 1065–1076, Jun. 2002.
[9] A. Lostetter, J. Hornberger, B. McPherson, B. Reese, R. Shaw, M. Schupbach, B. Rowden, A. Mantooth, J. Balda, T. Otsuka, K. Okumura, and M. Miura, "High-temperature silicon carbide and silicon on insulator based integrated power modules," in IEEE Vehicle Power and Propulsion Conference, 2009. VPPC ’09, 2009, pp. 1032–1035.
[10] M. Barlow, S. Ahmed, H. A. Mantooth and A. M. Francis, "An Integrated SiC CMOS Gate Driver," 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, 2016, pp. 1646-1649, doi: 10.1109/APEC.2016.7468087.
[11] Shamim Ahmed, "Modeling and Validation of 4H-SiC Low Voltage
MOSFETs for Integrated Circuit Design," University of Arkansas, May 2017.
[12] Tsunenobu Kimoto and James A. Cooper, "Fundamentals of Silicon Carbide Technology Growth, Characterization, Devices, and Applications," 2014 John Wiley & Sons Singapore Pte. Ltd.
[13] Donald A. Neamen, "Semiconductor Physics and Devices:Basic Principles, 4e," McGraw-Hill, 2012.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *