帳號:guest(3.21.43.58)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳冠嘉
作者(外文):Chen, Guan-Jia
論文名稱(中文):具有低輸入電壓、零逆回流電流、恆定開關導通電阻和頻率調整控制的電荷泵
論文名稱(外文):Charge Pump with Low Input Voltage , Zero Reverse Current , Constant Switch On-Resistance and Frequency Control
指導教授(中文):徐永珍
指導教授(外文):Hsu, Klaus Yung-Jane
口試委員(中文):賴宇紳
郭明清
口試委員(外文):Lai, Yu-Sheng
Kuo, Ming-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:107063558
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:86
中文關鍵詞:電荷泵逆回流電流導通電阻頻率控制系統
外文關鍵詞:charge pumpreverse currentswitch on-resistancefrequency control system
相關次數:
  • 推薦推薦:0
  • 點閱點閱:319
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文敘述了一個新式的電荷泵,具有低輸入電壓、零逆回流電流、恆定開關導通電阻、以及頻率控制系統的設計。一般的電荷泵都是操作在標準電壓1.8V下,由於電晶體的物理特性,這樣的電壓可以有效的讓其導通,但如果將操作電壓下降到電晶體的臨界電壓值附近,就會變成弱導通,所以若使用低電壓在傳統電荷泵上,將很難在負載電流大的情況下順利升壓,必須做一些電路上的改善,而本論文也提出了使用簡單的電路架構,產生不同的偏壓方式,來加強開關導通,使得電荷泵能有效的升壓。
此外,過去文獻中的電荷泵存在著一些問題,像是時脈轉換時有逆流電流,以及開關電阻在導通時隨時間增大,改良的電荷泵不僅解決以上問題,更增加了驅動能力和能量效率。
最後,若輸出端的負載變動時,過去的電荷泵會有輸出電壓跟著變動的問題,故其精確度和穩定性不佳,因此,本論文針對此應用問題,設計出一頻率回授控制電路,以穩定不同負載下的電壓輸出。
此晶片採用TSMC 0.18μm 1P6M製程來實現,其尺寸大小為1260μm x 1202μm。在本論文的電路中,輸入電壓為0.5V,負載電容為10pF,在負載電流0μA到50μA條件下,可達到輸出電壓為4.2V之規格。
This thesis proposes a new charge pump with low input voltage, zero reverse current, constant switch on-resistance, and its frequency control system. General charge pumps are operated under standard voltage of 1.8V. This voltage can smoothly turn transistor on due to its physical characteristic. While it may be weakly turned on if the operating voltage drops near the threshold voltage of transistor. So, traditional charge pumps with low input voltage are difficult to boost voltage under heavy load current. Some circuit improvements must be done. This thesis proposes ideas of using simple circuit architecture to provide bias voltage which helps switches to turn on, so that can make charge pump boost voltage efficiently.
In addition, there are some problems in previous charge pumps, such as the reverse current when clocks overlap and the increasing switch on-resistance when the charges are being transferred. The proposed charge pump not only solves above problems but also improves driving capability and power efficiency.
Lastly, the output voltage of conventional charge pumps will change if the output loading changes, which is a problem in accuracy and stability. To overcome this application problem, a frequency feedback control circuit is devised in this thesis to stabilize the output voltage under different loadings.
For the circuit demonstrated in this thesis, the input voltage is 0.5V and an output voltage of 4.2V is obtained when the load capacitance is 10pF and the load current ranges from 0μA to 50μA. The chip was fabricated in the TSMC 0.18μm 1P6M process and its size is 1260μm x 1202μm.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 論文概述 3
第二章 充電式電荷泵原理 4
2.1 簡介 4
2.2 電荷泵基本原理 4
2.3 Cockcroft Walton 電荷泵 6
第三章 電荷泵前人技術 8
3.1 Dickson 電荷泵 8
3.2 Charge Transfer Switches (CTS)電荷泵 11
3.2.1 Static CTS 11
3.2.2 Dynamic CTS 12
3.3 Latch 電荷泵 14
3.4 減少逆流電流電荷泵 17
3.5 低輸入電壓電荷泵 20
3.6 結論 22
第四章 新式電荷泵電路設計 23
4.1 簡介 23
4.2 操作原理 23
4.3 模擬結果與前人比較 29
第五章 頻率控制系統電路設計 32
5.1 簡介 32
5.2 系統架構 33
5.3 系統操作原理與規格 33
5.4 子電路設計與模擬 35
5.4.1 新式電荷泵 35
5.4.2 數位時脈控制 37
5.4.3 壓控振盪器 41
5.4.4 差值放大器 45
5.4.5 電位轉換器(Level Shifter) 48
5.4.6 回授電阻 49
5.4.7 帶差參考電路 49
第六章 系統模擬結果 52
6.1 輕載模擬結果(RL=10MΩ) 53
6.1.1 TT Corner 25℃ Pre-Simulation模擬結果 53
6.1.2 TT Corner 25℃ Post-Simulation模擬結果 54
6.1.3 SS Corner 0℃ Post-Simulation模擬結果 55
6.1.4 SS Corner 80℃ Post-Simulation模擬結果 56
6.1.5 FF Corner 0℃ Post-Simulation模擬結果 56
6.1.6 FF Corner 80℃ Post-Simulation模擬結果 57
6.2 中載模擬結果(RL=1MΩ) 59
6.2.1 TT Corner 25℃ Pre-Simulation模擬結果 59
6.2.2 TT Corner 25℃ Post-Simulation模擬結果 60
6.2.3 SS Corner 0℃ Post-Simulation模擬結果 61
6.2.4 SS Corner 80℃ Post-Simulation模擬結果 62
6.2.5 FF Corner 0℃ Post-Simulation模擬結果 62
6.2.6 FF Corner 80℃ Post-Simulation模擬結果 63
6.3 重載模擬結果(RL=0.1MΩ) 65
6.3.1 TT Corner 25℃ Pre-Simulation模擬結果 65
6.3.2 TT Corner 25℃ Post-Simulation模擬結果 66
6.3.3 SS Corner 0℃ Post-Simulation模擬結果 67
6.3.4 SS Corner 80℃ Post-Simulation模擬結果 68
6.3.5 FF Corner 0℃ Post-Simulation模擬結果 68
6.3.6 FF Corner 80℃ Post-Simulation模擬結果 69
6.4 模擬結果總整理與分析 71
第七章 晶片佈局與量測結果 74
7.1 晶片佈局 74
7.2 量測設備與環境 76
7.3 量測結果 78
7.4 量測問題討論 81
第八章 結論與後續建議 83
8.1 結論 83
8.2 後續研究改進建議 83
參考文獻 85
[1] Feng Pan and Tapan Samaddar, Charge Pump Circuit Design, McGraw-Hill, 2006.
[2] Cockcroft, J.D. and E.T. Walton, “Production of high velocity positive ions,” Proceedings of the Royal Society, A, vol. 136, pp. 619-630, 1932.
[3] Dickson J, “On-chip high-voltage generation in NMOS integrated circuits using an improved voltage multiplier technique,” IEEE Journal of Solid-State Circuits, vol. 11, no. 6, pp. 374-378, May 1976.
[4] J. T. Wu and K.-L. Chang, “MOS charge pump for low-voltage operation,” IEEE J. Solid-State Circuits, vol. 33, pp. 592–597, Apr. 1998.
[5] M.D. Ker, S.L. Chen and S.C. Tsai, “Design of Charge Pump Circuit with Consideration of Gate-Oxide Reliability in Low-Voltage CMOS Process,” IEEE Journal of Solid-State Circuits, vol. 41, no. 5, pp. 1100-1107, May 2006.
[6] Yi-Hsin Weng, Hui-Wen Tsai, and Ming-Dou Ker, "Design to suppress return-back leakage current of charge pump circuit in low-voltage CMOS process,"
[7] H. Peng, N. Tang, Y. Yang, and D. Heo, “CMOS Startup Charge Pump With Body Bias and Backward Control for Energy Harvesting Step-Up Converters,” IEEE Trans. Circuits Syst. I, vol. 61, no. 6, pp. 1618–1628, Jun. 2014.
[8] J. Heitz, N. Dumas, V. Frick, C. Lallement and L. Hébrard, "Modeling and Optimization of a Ker Charge Pump Loaded by a Resistive Circuit", IEEE Conference Mixed Design of Integrated Circuits and Systems, 24–26 May 2012.
[9] C.-H. Wu and C.-L. Chen, “A low-ripple charge pump with continuous pumping current control,” in Proc. 51st Midwest Symposium on Circuits and Systems, pp. 722–725, 2008.
[10] Chen Mingyang, Xiaobo Wu, and Menglian Zhao, "Novel high efficiency low ripple charge pump using variable frequency modulation," in Proc. IEEE 2010 International Conference on Microelectronics (ICM), 2010.
[11] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2003.
[12] 楊毓群, “具有零逆回流電流、恆定開關導通電阻和頻率調整控制的電荷泵”, 清華大學電子工程研究所碩士學位論文, 2014.
[13] Z. Kazemi, M. Reaz, and F. H. Hashim, “Low Power Five Stage Current Starved Voltage Controlled Oscillator in 0.18µm CMOS Technology towards Green Electronics,” presented at the International Conference on Advances in Science, Engineering, Technology and Natural Resources, Aug. 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *