帳號:guest(3.149.23.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃品崴
作者(外文):Huang, Pin-Wei
論文名稱(中文):利用表面矽離子佈植技術改善4H-SiC金氧半場效電晶體特性以及之可靠度評估
論文名稱(外文):Performance Enhancement and Reliability Evaluation of 4H-SiC MOSFETs using Si Implantation on The Surface
指導教授(中文):黃智方
指導教授(外文):Huang, Chih-Fang
口試委員(中文):巫勇賢
吳添立
口試委員(外文):Wu, Yung-Hsien
Wu, Tian-Li
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:107063556
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:87
中文關鍵詞:碳化矽通道遷移率閘極氧化層可靠度
外文關鍵詞:SiCChannel MobilityGate OxideReliability
相關次數:
  • 推薦推薦:0
  • 點閱點閱:289
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
雖然SiC擁有優越的材料特性,但是SiC MOSFETs仍然面臨著低通道電子遷移率的問題,導致有較高的導通電阻。主要原因為當碳化矽藉由熱氧化製程形成SiO2過程中,部分C原子會堆積在界面處形成缺陷,導致SiC MOS元件會有較高的界面能態密度DIT影響導通特性。為了解決這個問題,一般會使用NO、N2O進行氧化後退火來降低DIT。本論文利用全面性Si離子佈植技術於SiC表面,希望藉由表面的Si離子與非晶態的碳化矽晶體來改善氧化製程,減少界面處C原子相關的缺陷並降低DIT。為了探討Si離子佈植對MOS元件的影響,本論文會使用nMOSCap、LV-nMOSFET與1.2kV的VDMOS來評估元件特性,例如VTH、S.S.、通道電子遷移率、DIT等隨離子佈植劑量的變化,也對VDMOS的崩潰特性作討論,並且利用EDX與XPS量測來分析氧化層界面的材料特性。最後討論Si離子佈植對閘極氧化層可靠度的影響,例如Hysteresis、BTI以及TDDB,也評估了在高壓脈衝量測下,VDMOS於高達1.2kV的動態RON特性。

Although SiC has superior material characteristics, SiC MOSFETs still face the issue of low channel mobility, resulting in high channel resistance. The main reason is that when thermal oxidation process is utilized for SiC to form SiO2, some of the C atoms will accumulate at the interface and form defects, which makes the SiC MOS devices have a high interface state density DIT that affects the conduction characteristics. In order to address these problems, NO and N2O are generally used for post-oxidation annealing to decrease DIT.
This paper uses a blanket Si implantation technique on the SiC surface, aiming to improve the oxidation process by means of introducing Si ions and amorphouszing SiC crystal, possibly reducing C related defects at interface and decreasing DIT. In order to explore the effects of Si implantation on the MOS devices, this paper uses nMOSCap, LV-nMOSFET and 1.2kV VDMOS to evaluate the performance, such as VTH, S.S., channel mobility, and DIT with various implantation doses. In addition, breakdown characteristics of the VDMOS are also discussed, and the material properties of the interface are analyzed using EDX and XPS measurements. Finally, the influence of Si implantation on the reliability of the gate oxide is discussed, such as Hysteresis, BTI, and TDDB. The dynamic RON under a high voltage pulse up to 1.2kV are also evaluated for VDMOS.
中文摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 序論 1
1.1 碳化矽材料特性介紹 1
1.1.1 碳化矽材料組成 1
1.1.2 碳化矽的氧化層界面特性 2
1.2 文獻回顧 3
1.2.1 改善SiC/SiO2界面特性與通道遷移率 3
1.2.2 碳化矽MOS元件閘極可靠度-VTH的不穩定性 6
1.2.3 碳化矽MOS元件閘極可靠度-TDDB 8
1.3 研究動機 11
1.4 論文大綱 12
第二章 元件介紹與實驗設計 13
2.1 元件介紹 13
2.1.1 垂直型電容器(MOSCaps) 13
2.1.2 水平型金氧半場效電晶體(Lateral MOSFETs) 14
2.1.3 垂直型雙佈植金氧半場效電晶體(VDMOS) 16
2.2 Si離子佈植 18
2.3 元件特性量測 20
2.3.1 電容-電壓量測(C-V) 20
2.3.2 SiC/SiO2界面能態密度(DIT)電性分析 23
2.3.3 MOSFET順向導通特性 28
2.4 元件閘極可靠度-TDDB 30
2.4.1 Time-to-breakdown, tBD定義 30
2.4.2 統計與數據分析 33
2.4.3 Lifetime的推算 35
第三章 Si離子佈植對元件的影響 38
3.1 WAT量測結果 : epi-layer濃度/厚度 38
3.2 垂直型電容器量測及討論 38
3.3 水平型金氧半場效電晶體量測及討論 43
3.3.1 順向電流量測 43
3.3.2 閾值電壓的變化 47
3.3.3 SiC/SiO2界面的材料分析 48
3.4 垂直型雙佈植金氧半場效電晶體之應用 51
第四章 元件的可靠度 55
4.1 VTH的不穩定性 55
4.1.1 VTH Hysteresis現象 55
4.1.2 BTI的評估 62
4.2 VDMOS RON 的穩定性 68
4.3 nMOSCap TDDB量測結果 70
第五章 氧化層的漏電機制探討 72
5.1 氧化層IG-VGS與步階應力特性 72
5.2 碰撞游離的驗證 76
5.3 檢驗Si離子佈植在兩種漏電機制的差異 81
第六章 結論以及未來展望 82
參考文獻 84
[1] C. M. Zetterling, “Process Technology for Silicon Carbide Device,” EMIS processing series IEEE, 2002.
[2] G. R. Fisher and P. Barnes, “Towards a unified view of polytypism in silicon carbide,” Philosophical Magazine B, vol. 61, no. 2, pp. 217-236, 1990.
[3] A. R. Powell and L. B. Rowland, “SiC Materials—Progress, Status, and Potential Roadblocks,” Proceedings of the IEEE, vol. 90, no. 6, pp. 942-955, June 2002.
[4] K. C. Chang, N. T. Nuhfer, L. M. Porter, and Q. Wahab, “High-carbon concentrations at the silicon dioxide–silicon carbide interface identified by electron energy loss spectroscopy,” Applied Physics Letters, vol. 77, no. 14, pp. 2186-2188, 2000.
[5] H.-F. Li, S. Dimitrijev, H. B. Harrison, and D. Sweatman, “Interfacial characteristics of N2O and NO nitrided SiO2 grown on SiC by rapid thermal processing,” Applied Physics Letters, vol. 70, no. 15, pp. 2028-2030, 1997.
[6] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, O. W. Holland, M. K. Das, and J. W. Palmour, “Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide,” IEEE Electron Device Letters, vol. 22, no. 4, pp. 176-178, 2001.
[7] T. Kimoto, Y. Kanzaki, M. Noborio, H. Kawano, and H. Matsunami, “Interface Properties of Metal–Oxide–Semiconductor Structures on 4H-SiC {0001} and (11-20) Formed by N2O Oxidation,”
Japanese Journal of Applied Physics, vol. 44, no. 3, pp. 1213-1218, 2005.
[8] M. Noguchi, T. Iwamatsu, H. Amishiro, H. Watanabe, K. Kita, N. Miura, “Channel engineering of 4H-SiC MOSFETs using sulphur as a deep level donor,” IEEE International Electron Devices Meeting (IEDM), pp. 185-188, 2018.
[9] M. Noguchi, T. Iwamatsu, H. Amishiro, H. Watanabe, K. Kita, N. Miura, “Improvement in the Channel Performance and NBTI of SiC-MOSFETs by Oxygen Doping,” IEEE International Electron Devices Meeting (IEDM), pp. 482-485, 2019.
[10] A. J. Lelis, R. Green, D. B. Habersat, M. El, “Basic Mechanisms of Threshold-Voltage Instability and Implications for Reliability Testing of SiC MOSFETs,” IEEE Transactions on Electron Devices, vol. 62, no. 2, pp. 316-323, 2015.
[11] A. J. Lelis, D. Habersat, R. Green, A. Ogunniyi, M. Gurfinkel, J. Suehle, N. Goldsman, “Time Dependence of Bias-Stress-Induced SiC MOSFET Threshold-Voltage Instability Measurements,” IEEE Transactions on Electron Devices, vol. 55, no. 8, pp. 1835-1840, 2008.
[12] R. Singh, A. R. Hefner, “Reliability of SiC MOS devices,” Solid-State Electronics, vol. 48, no. 10-11, pp. 1717-1720, 2004.
[13] A. K. Agarwal, S. Seshadri, L. B. Rowland, “Temperature dependence of Fowler-Nordheim current in 6H- and 4H-SiC MOS capacitors,” IEEE Electron Device Letters, vol. 18, no. 12, pp. 592-594, 1997.
[14] K. Fujihira, N. Miura, K. Shiozawa, M. Imaizumi, K. Ohtsuka, T. Takami, “Successful Enhancement of Lifetime for SiO2 on 4H-SiC by N2O anneal,” IEEE Electron Device Letters, vol. 25, no. 11, pp. 734-736, 2004.
[15] M. Gurfinkel, J. C. Horst, J. S. Suehle, J. B. Bernstein, Y. Shapira, K. S. Matocha, G. Dunne, R. A. Beaupre, “Time-Dependent Dielectric Breakdown of 4H-SiC/SiO2 MOS Capacitors,” IEEE Transactions on Device and Materials Reliability, vol. 8, no. 4, pp. 635-641, 2008.
[16] T. Kimoto, J. A. Cooper, “Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications,” John Wiley & Sons, Singapore Pte. Ltd., pp. 195, 2014.
[17] J. A. Cooper, JR., “Advances in SiC MOS Technology,” Physica Status Solidi (A), vol. 162, no. 1, pp. 305-320, 1997.
[18] S. Harada, R. Kosugi, J. Senzaki, W. J. Cho, K. Fukuda, K. Arai, S. Suzuki, “Relationship between channel mobility and interface state density in SiC metal–oxide–semiconductor field-effect transistor,” Journal of Applied Physics, vol. 91, no. 3, pp. 1568-1571, 2002.
[19] J. N. Shenoy, G. L. Chindalore, M. R. Melloch, J. A. Cooper, JR., J. W. Palmour, K. G. Irvine, “Characterization and optimization of the SiO2/SiC metal-oxide semiconductor interface,” Journal of Electronic Materials, vol. 24, no. 4, pp. 303-309, 1995.
[20] A. V. Penumatcha, S. Swandono, J. A. Cooper, “Limitations of the High - Low C-V Technique for MOS Interfaces With Large Time Constant Dispersion,” IEEE Transactions on Electron Devices, vol. 60, no. 3, pp. 923-926, 2013.
[21] R. Degraeve, B. Kaczer, G. Groeseneken, “Degradation and breakdown in thin oxide layers : mechanisms, models and reliability prediction,” Microelectronics Reliability, vol. 39, no. 10, pp. 1445-1460, 1999.
[22] J. C. Fothergill, “Estimating the cumulative probability of failure data points to be plotted on Weibull and other probability paper,” IEEE Transactions on Electrical Insulation, vol. 25, no. 3, pp. 489-492, 1990.
[23] T.-L. Wu, Long term stability of enhancement mode GaN power devices. PhD thesis, Faculty Eng., Katholieke Univ., Leuven, Belgium, 2016.
[24] L. C. Yu, G. T. Dunne, K. S. Matocha, K. P. Cheung, J. S. Suehle, K. Sheng, “Reliability Issues of SiC MOSFETs : A Technology for High-Temperature Environments,” IEEE Transactions on Device and Materials Reliability, vol. 10, no. 4, pp. 418-426, 2010.
[25] J. McPherson, V. Reddy, K. Banerjee, H. Le, “Comparison of E and 1/E TDDB models for SiO2 under long-term/low-field test conditions,” IEEE International Electron Devices Meeting (IEDM), pp. 171-174, 1998.
[26] H. Yoshioka, T. Nakamura, T. Kimoto, “Accurate evaluation of interface state density in SiC metal-oxide-semiconductor structures using surface potential based on depletion capacitance,” Journal of Applied Physics, vol. 111, no. 1, pp. 014502-1-014502-5, 2012.
[27] M. Gurfinkel, H. D. Xiong, K. P. Cheung, J. S. Suehle, J. B. Bernstein, Y. Shapira, A. J. Lelis, D. Habersat, N. Goldsman, “Characterization of Transient Gate Oxide Trapping in SiC MOSFETs Using Fast I–V Techniques,” IEEE Transactions on Electron Devices, vol. 55, no. 8, pp. 2004-2012, 2008.
[28] G. Rescher, G. Pobegen, T. Aichinger, T. Grasser, “On the subthreshold drain current sweep hysteresis of 4H-SiC nMOSFETs,” IEEE International Electron Devices Meeting (IEDM), pp. 276-279, 2016.
[29] C.-T. Yen, C.-C. Hung, H.-T. Hung, C.-Y. Lee, L.-S. Lee, Y.-F. Huang, and F.-J. Hsu, “Negative bias temperature instability of SiC MOSFET induced by interface trap assisted hole trapping,” Applied Physics Letters, vol. 108, no. 1, pp. 012106-1-012106-4, 2016.
[30] T.-L. Wu, J. Franco, D. Marcon, B. D. Jaeger, B. Bakeroot, S. Stoffels, M. V. Hove, G. Groeseneken, “Toward Understanding Positive Bias Temperature Instability in Fully Recessed-Gate GaN MISFETs,” IEEE Transactions on Electron Devices, vol. 63, no. 5, pp. 1853-1860, 2016.
[31] M. Meneghini, I. Rossetto, C. D. Santi, F. Rampazzo, A. Tajalli, A. Barbato, M. Ruzzarin, M. Borga, E. Canato, E. Zanoni, and G. Meneghesso, “Reliability and failure analysis in power GaN-HEMTs: An overview,” IEEE International Reliability Physics Symposium (IRPS), pp. 3B-2.1-3B-2.8, 2017.
[32] D. J. DiMaria, E. Cartier, and D. Arnold, “Impact ionization, trap creation, degradation, and breakdown in silicon dioxide films on silicon,” Journal of Applied Physics, vol. 73, no. 7, pp. 3367-3384, 1993.
[33] U. Schwalke, M. Polzl, T. Sekinger, M. Kerber, “Ultra-thick gate oxides: charge generation and its impact on reliability,” Microelectronics Reliability, vol. 41, no. 7, pp. 1007-1010, 2001.
[34] R. C. Hughes, “Hole mobility and transport in thin SiO2 films,” Applied Physics Letters, vol. 26, no. 8, pp. 436-438, 1975.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *