帳號:guest(3.144.23.97)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許弘楷
作者(外文):Syu, Hong-Kai.
論文名稱(中文):二硫化鎢與二硒化鎢異質結構之光偵測器研究
論文名稱(外文):WS2/WSe2 heterostructure photodetectors
指導教授(中文):邱博文
指導教授(外文):Chui, Po-Wen
口試委員(中文):闕郁倫
李奎毅
口試委員(外文):Chueh, Yu-Lun
Lee, Kuei-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:107063550
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:91
中文關鍵詞:二硫化鎢二硒化鎢二維材料光偵測器
外文關鍵詞:tungsten disulfidetungsten diselenideTwo-dimensional materialsphotodetectors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:548
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
如何兼顧響應時間(Response time) 與響應度(Responsivity) 一直是二維光偵測器的一大課題。實驗中,最初發想是以反應離子蝕刻機在特定參數下,使二硫化鎢的單晶能產生鬆動與缺陷,而後在大氣環境下氧化使之出現細小孔洞,並用二次成長的方式填入二硒化鎢,以此作為元件的通道材料,期望利用typeII二維側向異質結構,在照光後激發出電子電洞,藉由二硒化鎢抓住電洞而吸引電子來達到額外的光增益。但由於反應離子蝕刻參數所造成的缺陷數量容易過多,時常造成元件電性由原本二硫化鎢的N型轉變為二硒化鎢的P 型,故在接下來的一系列實驗,除了嘗試不同參數對於電性量測結果的改變外,也利用以二硫化鎢做為主要通道,並以不同結構堆疊來實現高增益、高響應度(Responsivity)、高探測率(Detectivity)、低響應時間(Response time) 等等光電特性。而在改善金屬電極與二維半導體通道的接觸上也下了功夫,利用石墨烯做為接觸電極的材料,有效解決費米能階釘札(Fermi level pinning) 和蕭特基能障等問題。
It’s always a issue to acheive both response time and responsivity at the same time.For the experiment,the origin idea is using reation ion etching(RIE) process let WS2 crytical loosen and pocess defect,then oxidize in the atmosphere for 10 minutes in order to obtain the quantumsize dot.After that,do the secondgrowth CVD process of WSe2 which can embed the WSe2 quantum dot into the WS2 crystal.Use the product which under go the process of secondgrowth CVD as the channel material.It is expected that through the photogating effect and the photoconductive effect, the typeII lateral heterostructure will have good photo gain performance.But the results turn out to be fail.Due to Coulomb scattering and excessive defects in the WS 2 channel, the excess WSe 2 makes the ntype device ptype. Therefore, the focus of this series of experiments will be on comparing different structures.
Use different stacking sequence to obtain a device with high gain, high responsivity, high detectivity, high on/off ratio and low response time.In addition, the use of graphene electrodes can improve contact problems, such as Fermi level pinning and Schottky barriers.
目錄
Abstract......................................................... III
論文摘要........................................................... V
目錄............................................................ VIII
第一章緒論.......................................................... 1
1.1 半導體技術演進.................................................. 1
1.2 傳統半導體的微縮與極限........................................... 3
1.3 二維材料發展.................................................... 3
1.4 半導體光偵測器介紹.............................................. 5
1.5 論文架構....................................................... 10
第二章材料製備與檢測................................................ 11
2.1 石墨烯與過渡金屬二硫屬化合物介紹................................. 11
2.1.1 石墨烯介紹................................................... 11
2.1.2 過渡金屬二硫化合物介紹........................................ 17
2.2 石墨烯與過渡金屬二硫屬化合物製備................................. 21
2.2.1 機械剝離法(Machanical exfoliaion)............................ 21
2.2.2 化學氣相沉積法(Chemical vapor deposition).................... 22
2.3 石墨烯與過渡金屬二硫屬化合物檢測................................. 23
2.3.1 拉曼散射頻譜................................................. 23
2.3.2 光致螢光光譜................................................. 28
第三章結構設計..................................................... 31
3.1 石墨烯接觸電極................................................. 31
3.2 QD/WS2元件.................................................... 32
3.3 QD/WS2元件堆疊WS2.............................................. 33
3.4 Gr/WS2/nWSe2.................................................. 34
第四章元件製程..................................................... 35
4.1 二維材料之製備與檢測............................................ 35
4.1.1 石墨烯...................................................... 35
4.1.2 二硫化鎢..................................................... 37
4.1.3 二硒化鎢..................................................... 40
4.2 QD/WS2製程.................................................... 44
4.3 石墨烯接觸電極................................................. 48
4.4 材料堆疊轉移................................................... 50
第五章光電子電晶體特性量測與分析..................................... 53
5.1 基本電晶體量測與分析............................................ 53
5.1.1 元件量測方法與量測系統........................................ 53
5.1.2 量測結果與分析............................................... 54
5.2 能帶與能障分析................................................. 62
5.3 光電特性量測與分析............................................. 64
5.3.1 光電特性量測系統............................................. 64
5.3.2 光響應度..................................................... 65
5.3.3 探測率...................................................... 71
5.3.4 響應時間與照光電流開關比...................................... 72
第六章結論與未來展望................................................ 77
參考文獻........................................................... 79
[1] Wikipedia contributors. Semiconductor device — Wikipedia, the free encyclopedia, 2020.
[2] Wikimedia Commons. File:bardeen shockley brattain 1948.jpg — wikimedia commons, the free media repository, 2019.
[3] https:// www.informationsociety.co.uk/ getusedtoitquantumcomputingwillbringimmenseprocessingpossibilities/.
[4] Wikimedia Commons. File:mosfetcross. png — wikimedia commons, the
free media repository, 2015.
[5] Wikimedia Commons. File:integrated circuit on microchip.jpg — wikimedia commons, the free media repository, 2019.
[6] Wikimedia Commons. File:intel.svg — wikimedia commons, the free media repository, 2019.
[7] https:// www.designreuse.com/ articles/41330/cmossoifinfettechnologyreviewpaper.html.
[8] Wikipedia contributors. Graphene — Wikipedia, the free encyclopedia, 2020.
[9] Sang A. Han, Ravi Bhatia, and SangWoo Kim. Synthesis, properties and potential applications of twodimensional transition metal dichalcogenides. Nano Convergence, 2(1):17–, 2015.
[10] Van Tuan D. Electronic and transport properties of graphene. Charge and Spin Transport in Disordered GrapheneBased Materials., pages 5–34, 2015.
[11] Jun Yao, Yu Sun, Mei Yang, and Yixiang Duan. Chemistry, physics and biology of graphenebased nanomaterials: new horizons for sensing, imaging and medicine. J. Mater. Chem., 22:14313–14329, 2012.
[12] Andrea C. Ferrari. Raman spectroscopy of graphene and graphite: Disorder, electronphonon coupling, doping and nonadiabatic effects. Solid State Communications, 143(1):47–57, 2007.
[13] Manish Chhowalla, Hyeon Suk Shin, Goki Eda, LainJong Li, Kian Ping Loh, and Hua Zhang. The chemistry of twodimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 5(4):263–275, 2013.
[14] Jiahao Kang, Wei Liu, Deblina Sarkar, Debdeep Jena, and Kaustav Banerjee. Computational study of metal contacts to monolayer transitionmetal dichalcogenide semiconductors. Phys. Rev. X, 4(3):031005–, July 2014.
[15] A. Kuc, N. Zibouche, and T. Heine. Influence of quantum confinement on the electronic structure of the transition metal sulfide ts2. Phys. Rev. B, 83(24):245213–, June 2011.
[16] Mushtaq Ahmad, Eric Müller, Carsten Habenicht, Roman Schuster, Martin Knupfer, and Bernd Büchner. Semiconductortometal transition in the bulk of WSe2upon potassium intercalation. Journal of Physics: Condensed Matter, 29(16):165502, mar 2017.
[17] Won Seok Yun, S. W. Han, Soon Cheol Hong, In Gee Kim, and J. D.
Lee. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2hmX2 semiconductors (m = mo, w; x = s, se, te). Phys. Rev. B, 85:033305, Jan 2012.
[18] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306(5696):666–669, 2004.
[19] J.D. Plummer, M.D. Deal, and P.B. Griffin. Silicon VLSI Technology: Fundamentals, Practice and Modeling. Prentice Hall electronics and VLSI series. Prentice Hall, 2000.
[20] Wikimedia Commons. File:raman energy levels.svg — wikimedia commons, the free media repository, 2020.
[21] L.M. Malard, M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus. Raman spectroscopy in graphene. Physics Reports, 473(5):51–87, 2009.
[22] Mark T. Wall. The raman spectroscopy of graphene and the determination of layer thickness. 2011.
[23] Xin Zhang, XiaoFen Qiao, Wei Shi, JiangBin Wu, DeSheng Jiang, and PingHeng Tan. Phonon and raman scattering of twodimensional
transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev., 44:2757–2785, 2015.
[24] Xin Luo, Yanyuan Zhao, Jun Zhang, Minglin Toh, Christian Kloc, Qihua Xiong, and Su Quek. Effects of lower symmetry and dimensionality on raman spectra in 2d wse2. Physical Review B, 88, 01 2014.
[25] Yu Zhang, Yanfeng Zhang, Qingqing Ji, Jing Ju, Hongtao Yuan, Jianping Shi, Teng Gao, Donglin Ma, Mengxi Liu, Yubin Chen, Xiuju Song, Harold Y. Hwang, Yi Cui, and Zhongfan Liu. Controlled growth of highquality monolayer ws2 layers on sapphire and imaging its grain boundary. ACS Nano, 7(10):8963–8971, 2013.
[26] Weijie Zhao, Zohreh Ghorannevis, Kiran Kumar Amara, Jing Ren Pang, Minglin Toh, Xin Zhang, Christian Kloc, Ping Heng Tan, and Goki Eda. Lattice dynamics in monoand fewlayer sheets of ws2 and wse2. Nanoscale, 5:9677–9683, 2013.
[27] M. Fox. Optical Properties of Solids. Oxford Master Series in Physics. OUP Oxford, 2010.
[28] ChunChieh Lu, YungChang Lin, Zheng Liu, ChaoHui Yeh, Kazu Suenaga, and PoWen Chiu. Twisting bilayer graphene superlattices. ACS Nano, 7(3):2587–2594, March 2013.
[29] Shaahin Amini, Javier Garay, Guanxiong Liu, Alexander Balandin, and Reza Abbaschian. Growth of largearea graphene films from metalcarbon melts. Journal of Applied Physics, 108, 11 2010.
[30] Yimin A. Wu, Ye Fan, Susannah Speller, Graham L. Creeth, Jerzy T. Sadowski, Kuang He, Alex W. Robertson, Christopher S. Allen, and Jamie H. Warner. Large single crystals of graphene on melted copper using chemical vapor deposition. ACS Nano, 6(6):5010–5017, 2012.
[31] JingKai Huang, Jiang Pu, ChangLung Hsu, MingHui Chiu, ZhenYu Juang, YungHuang Chang, WenHao Chang, Yoshihiro Iwasa, Taishi Takenobu, andLainJong Li. Largearea synthesis of highly crystalline wse2 monolayers and device applications. ACS Nano, 8(1):923–930, January 2014.
[32]https://plasma.oxinst.com/campaigns/technology/reactiveionetchingpe.
[33] TsungHan Tsai, ZhengYong Liang, YungChang Lin, ChengChieh
Wang, KuangI Lin, Kazu Suenaga, and PoWen Chiu. Photogating ws2 photodetectors using embedded wse2 charge puddles. ACS Nano, 14(4):4559–4566, 2020.
[34] ChaoHui Yeh, HsiangChieh Chen, HoChun Lin, YungChang Lin, ZhengYong Liang, MeiYin Chou, Kazu Suenaga, and PoWen Chiu. Ultrafast
monolayer in/grws2gr hybrid photodetectors with high gain. ACS Nano,
13(3):3269–3279, March 2019.
[35] Dominik Kufer and Gerasimos Konstantatos. Highly sensitive, encapsulated mos2 photodetector with gate controllable gain and speed. Nano Lett., 15(11):7307–7313, November 2015.
[36] Gerasimos Konstantatos, Michela Badioli, Louis Gaudreau, Johann Osmond, Maria Bernechea, F. Pelayo Garcia de Arquer, Fabio Gatti, and Frank H. L. Koppens. Hybrid graphenequantum dot phototransistors with ultrahigh gain. Nature Nanotechnology, 7(6):363–368, 2012.
[37] Massimo Macucci, Gerry Tambellini, Dmitry Ovchinnikov, Andras Kis, Giuseppe Iannaccone, and Gianluca Fiori. On current transients in mos2 field effect transistors. Scientific Reports, 7(1):11575–, 2017.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *