帳號:guest(3.148.113.219)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳奕頡
作者(外文):Wu, Yi-Chieh.
論文名稱(中文):嵌入二硒化鎢的二硫化鎢場效電晶體與非揮發性記憶體特性研究
論文名稱(外文):Analysis of WS2 Field-Effect Transistors and Non-Volatile Memory with Embedded WSe2
指導教授(中文):邱博文
指導教授(外文):Chiu, Po-Wen
口試委員(中文):李奎毅
闕郁倫
口試委員(外文):Lee, Kuei-Yi
Chueh, Yu-Lun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:107063546
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:81
中文關鍵詞:二維材料二硫化鎢二硒化鎢非揮發性記憶體
外文關鍵詞:2D materialTungsten disulfideTungsten diselenideNon-VolatileMemory
相關次數:
  • 推薦推薦:0
  • 點閱點閱:638
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文首先探討的過渡金屬二硫族化物中的二硫化鎢做為場效電晶體的特性,我們透過濕式轉印的方式,使許多微小且密集的二硒化鎢(nanopatches-WSe2, n-WSe2)覆蓋上去,發現電流與電子遷移率都有明顯的上升。之後以這個結構為基礎,藉由二維材料極佳的電性以及浮閘極的結構,去探討非揮發性記憶體的特性。

在通道材料部分,以化學氣相沉積的方式製備出二硫化鎢與二硒化鎢,而在穿隧介電層,我們選擇透過機械剝離法的方式取得六方氮化硼和利用原子層沉積方式製作出氧化鋁,再分別去討論其結果,最後再以石墨烯作為浮閘極,透過這種結構,去探討不同的穿隧介電層帶來的非揮發性記憶體特性。以n-WSe2/WS2/六方氮化硼/石墨烯結構製成的非揮發性記憶體,表現出極佳的記憶體特性,長時間下還能夠維持三至四個數量級的儲存空間以及優秀的重複抹寫的耐用性。而以n-WSe2/WS2/氧化鋁 By ALD/石墨烯的結構製成的非揮發性記憶體,我們發現它轉變為兩端點的憶阻器,不需加入閘極電壓的控制,僅透過汲極端的電壓,就能自由的寫入與抹除,長時間下也能保持記憶狀態,也表現出不錯的耐用性。

作為超薄的電子元件,先透過小又密的二硒化鎢覆蓋二硫化鎢的方式,使得接觸變好,整體電性上升,再以六方氮化硼作為穿隧介電層、石墨烯作為浮閘極,在非揮發性記憶體應用上取得不錯的結果,而以氧化鋁作為穿隧介電層時,出現預期之外的結果,轉變為憶阻器,僅透過兩端點就能達到記憶體特性。
This thesis first discusses the electrical measurement of tungsten disulfide in TMDCs as MOSFET. We used wet transfer to cover many tiny and dense tungsten diselenide and found the performance and electron mobility have significantly increased. Based on this structure, the excellent electrical properties of the two-dimensional material and the structure of the floating gate are used to explore the characteristics of non-volatile memory. As an ultra-thin electronic component, the tungsten disulfide is covered by small and dense tungsten diselenide. It make the contact better and the overall electrical performance rises. Then use hexagonal boron nitride as the tunnel barrier and graphene as the floating gate. It has great performance in non-volatile memory applications. When Aluminum oxide is used as the tunnel barrier, unexpected results occur, and it turns into a memristor, which can achieve memory characteristics only through the two terminal.
Abstract............................................................................................................... I
論文摘要............................................................................................................. III
目錄.................................................................................................................. VI
第一章序論....................................................................................................... 1
1.1 半導體發展史. . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 半導體製程的微縮與限制. . . . . . . . . . . . . . . . . . . . . 3
1.3 半導體記憶體介紹. . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 浮閘極電晶體能帶分析. . . . . . . . . . . . . . . . . . . . . . 11
1.5 論文結構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
第二章二維材料介紹....................................................................................... 15
2.1 二維材料發展史與未來. . . . . . . . . . . . . . . . . . . . . . 15
2.2 石墨烯介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 六方氮化硼介紹. . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 過渡金屬二硫化物(TMDCs) 介紹. . . . . . . . . . . . . . . . 23
2.4.1 晶格結構. . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 電子能帶. . . . . . . . . . . . . . . . . . . . . . . . . . 25
第三章二維材料的製備與檢測....................................................................... 27
3.1 二維材料製備方法. . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.1 機械剝離法(Mechanical exfoliation) . . . . . . . . . . . 27
3.1.2 化學氣相沉積法(Chemical vapor deposition) . . . . . . 27
3.2 二維材料檢測方法. . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 拉曼散射光譜. . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 光致螢光光譜. . . . . . . . . . . . . . . . . . . . . . . 34
第四章元件製程............................................................................................... 37
4.1 結構設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.1 通道材料. . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 浮閘極電晶體. . . . . . . . . . . . . . . . . . . . . . . 38
4.2 二維材料的成長與分析. . . . . . . . . . . . . . . . . . . . . . 40
4.2.1 石墨烯. . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 二硫化鎢. . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 二硒化鎢. . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 基板清洗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 乾溼式轉印. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 原子層沉積. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 黃光製程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.7 反應式離子蝕刻. . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.8 熱金屬蒸鍍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
第五章實驗量測結果與分析........................................................................... 53
5.1 場效電晶體量測方法與系統. . . . . . . . . . . . . . . . . . . 53
5.2 場效電晶體電性量測結果. . . . . . . . . . . . . . . . . . . . . 54
5.2.1 通道材料: 嵌入二硒化鎢的二硫化鎢. . . . . . . . . . 54
5.3 浮閘極電晶體之記憶體特性量測與分析. . . . . . . . . . . . . 61
5.3.1 穿隧介電層: 六方氮化硼. . . . . . . . . . . . . . . . . 63
5.3.2 穿隧介電層: 以原子層沉積方式沉積氧化鋁. . . . . . 67
第六章未來展望............................................................................................... 75
參考文獻............................................................................................................. 77
[1] J. Bardeen and W. H. Brattain, “The transistor, a semiconductor triode,” Proceedings
of the IEEE, vol. 86, pp. 29–30, Jan 1998.
[2] https://historycomputer.
com/ModernComputer/Basis/transistor.html.
[3] Wikipedia contributors, “Mosfet — Wikipedia, the free encyclopedia,” 2020.
[4] http:// aneeshpthankachan.blogspot.com/ 2014/01/ eraofintegratedcircuit.
html.
[5] https:// www.hitachihightech.
com/ global/ products/ device/ semiconductor/
history.html.
[6] D. Hisamoto, WenChin
Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo,
E. Anderson, TsuJae
King, J. Bokor, and Chenming Hu, “Finfeta
selfaligned
doublegate
mosfet scalable to 20 nm,” IEEE Transactions on Electron
Devices, vol. 47, pp. 2320–2325, Dec 2000.
[7] Wikipedia contributors, “Finfet — Wikipedia, the free encyclopedia,” 2020.
[8] https:// www.eetimes.com/ underthehood45nmwhatinteldidnttellyou/?
piddlmsgorder = asc.
[9] http://www.ndl.org.tw/docs/publication/213/pd f /D2.pd f.
[10] K. S. Novoselov, A. K. Geim, S. V. Morozov, S. V. Dubonos, Y. Zhang, and
D. Jiang, “Roomtemperature
electric field effect and carriertype
inversion
in graphene films,” 2004.
[11] https://atomselectrons.com/2012/03/26/alkenes/.
[12] D. V. Tuan, “Charge and spin transport in disordered graphenebased
materials,”
p. 7, 2015.
[13] D. V. Tuan, “Charge and spin transport in disordered graphenebased
materials,”
p. 6, 2015.
[14] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K.
Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81,
pp. 109–162, Jan 2009.
[15] Wikipedia contributors, “Boron nitride — Wikipedia, the free encyclopedia,”
2020.
[16] M. Chhowalla, H. S. Shin, G. Eda, L.J.
Li, K. P. Loh, and H. Zhang,
“The chemistry of twodimensional
layered transition metal dichalcogenide
nanosheets,” Nature Chemistry, vol. 5, no. 4, pp. 263–275, 2013.
[17] X. Zhu, D. Li, X. Liang, and W. D. Lu, “Ionic modulation and ionic coupling
effects in mos2 devices for neuromorphic computing,” Nature Materials,
vol. 18, no. 2, pp. 141–148, 2019.
[18] Q. H. Wang, K. KalantarZadeh,
A. Kis, J. N. Coleman, and M. S.
Strano, “Electronics and optoelectronics of twodimensional
transition metal
dichalcogenides,” Nature Nanotechnology, vol. 7, no. 11, pp. 699–712, 2012.
[19] H. Yuan, H. Wang, and Y. Cui, “Twodimensional
layered chalcogenides:
From rational synthesis to property control via orbital occupation and electron
filling,” Accounts of Chemical Research, vol. 48, no. 1, pp. 81–90, 2015.
[20] W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, “Thickness
and strain effects on electronic structures of transition metal dichalcogenides:
2hmX2
semiconductors (m = mo, w; x = s, se, te),” Phys. Rev. B, vol. 85,
p. 033305, Jan 2012.
[21] L. Malard, M. Pimenta, G. Dresselhaus, and M. Dresselhaus, “Raman spectroscopy
in graphene,” Physics Reports, vol. 473, no. 5, pp. 51 – 87, 2009.
[22] F. M. Jingang Wang and M. Sun, “Graphene, hexagonal boron nitride, and
their heterostructures: properties and applications,” Royal society of chemistry,
vol. 7, pp. 16801–16822, 2017.
[23] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht,
C. Kloc, O. Gordan, D. R. T. Zahn, S. M. de Vasconcellos, and
R. Bratschitsch, “Photoluminescence emission and raman response of monolayer
mos2, mose2, and wse2,” Opt. Express, vol. 21, pp. 4908–4916, Feb
2013.
[24] H. Zeng, G.B.
Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen,
W. Yao, and X. Cui, “Optical signature of symmetry variations and spinvalley
coupling in atomically thin tungsten dichalcogenides,” Scientific Reports,
vol. 3, no. 1, pp. 1608–, 2013.
[25] A. V. Kolobov and J. Tominaga, “Twodimensional
transitionmetal
dichalcogenides,”
MRS Bulletin, vol. 42, no. 6, p. 471–471, 2017.
[26] M. Sup Choi, G.H.
Lee, Y.J.
Yu, D.Y.
Lee, S. Hwan Lee, P. Kim, J. Hone,
and W. Jong Yoo, “Controlled charge trapping by molybdenum disulphide
and graphene in ultrathin heterostructured memory devices,” Nature Communications,
vol. 4, no. 1, pp. 1624–, 2013.
[27] C. Jin, J. Kim, M. I. B. Utama, E. C. Regan, H. Kleemann, H. Cai, Y. Shen,
M. J. Shinner, A. Sengupta, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl,
and F. Wang, “Imaging of pure spinvalley
diffusion current in ws2wse2
heterostructures,”
Science, vol. 360, no. 6391, pp. 893–896, 2018.
[28] T.H.
Tsai, Z.Y.
Liang, Y.C.
Lin, C.C.
Wang, K.I.
Lin, K. Suenaga, and
P.W.
Chiu, “Photogating ws2 photodetectors using embedded wse2 charge
puddles,” ACS Nano, vol. 14, pp. 4559–4566, Apr. 2020.
[29] M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, and T. Mueller, “Photovoltaic
effect in an electrically tunable van der waals heterojunction,” Nano
Lett., vol. 14, pp. 4785–4791, Aug. 2014.
[30] F. Ceballos, M. Z. Bellus, H.Y.
Chiu, and H. Zhao, “Ultrafast charge separation
and indirect exciton formation in a mos2–mose2 van der waals heterostructure,”
ACS Nano, vol. 8, no. 12, pp. 12717–12724, 2014.
[31] M. Z. Bellus, F. Ceballos, H.Y.
Chiu, and H. Zhao, “Tightly bound trions
in transition metal dichalcogenide heterostructures,” ACS Nano, vol. 9,
pp. 6459–6464, June 2015.
[32] Q. A. Vu, Y. S. Shin, Y. R. Kim, V. L. Nguyen, W. T. Kang, H. Kim, D. H.
Luong, I. M. Lee, K. Lee, D.S.
Ko, J. Heo, S. Park, Y. H. Lee, and W. J.
Yu, “Twoterminal
floatinggate
memory with van der waals heterostructures for ultrahigh on/off ratio,” Nature Communications, vol. 7, no. 1, pp. 12725–,
2016.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *