|
[1] J. Bardeen and W. H. Brattain, “The transistor, a semiconductor triode,” Proceedings of the IEEE, vol. 86, pp. 29–30, Jan 1998. [2] https://historycomputer. com/ModernComputer/Basis/transistor.html. [3] Wikipedia contributors, “Mosfet — Wikipedia, the free encyclopedia,” 2020. [4] http:// aneeshpthankachan.blogspot.com/ 2014/01/ eraofintegratedcircuit. html. [5] https:// www.hitachihightech. com/ global/ products/ device/ semiconductor/ history.html. [6] D. Hisamoto, WenChin Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, TsuJae King, J. Bokor, and Chenming Hu, “Finfeta selfaligned doublegate mosfet scalable to 20 nm,” IEEE Transactions on Electron Devices, vol. 47, pp. 2320–2325, Dec 2000. [7] Wikipedia contributors, “Finfet — Wikipedia, the free encyclopedia,” 2020. [8] https:// www.eetimes.com/ underthehood45nmwhatinteldidnttellyou/? piddlmsgorder = asc. [9] http://www.ndl.org.tw/docs/publication/213/pd f /D2.pd f. [10] K. S. Novoselov, A. K. Geim, S. V. Morozov, S. V. Dubonos, Y. Zhang, and D. Jiang, “Roomtemperature electric field effect and carriertype inversion in graphene films,” 2004. [11] https://atomselectrons.com/2012/03/26/alkenes/. [12] D. V. Tuan, “Charge and spin transport in disordered graphenebased materials,” p. 7, 2015. [13] D. V. Tuan, “Charge and spin transport in disordered graphenebased materials,” p. 6, 2015. [14] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, pp. 109–162, Jan 2009. [15] Wikipedia contributors, “Boron nitride — Wikipedia, the free encyclopedia,” 2020. [16] M. Chhowalla, H. S. Shin, G. Eda, L.J. Li, K. P. Loh, and H. Zhang, “The chemistry of twodimensional layered transition metal dichalcogenide nanosheets,” Nature Chemistry, vol. 5, no. 4, pp. 263–275, 2013. [17] X. Zhu, D. Li, X. Liang, and W. D. Lu, “Ionic modulation and ionic coupling effects in mos2 devices for neuromorphic computing,” Nature Materials, vol. 18, no. 2, pp. 141–148, 2019. [18] Q. H. Wang, K. KalantarZadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of twodimensional transition metal dichalcogenides,” Nature Nanotechnology, vol. 7, no. 11, pp. 699–712, 2012. [19] H. Yuan, H. Wang, and Y. Cui, “Twodimensional layered chalcogenides: From rational synthesis to property control via orbital occupation and electron filling,” Accounts of Chemical Research, vol. 48, no. 1, pp. 81–90, 2015. [20] W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, “Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2hmX2 semiconductors (m = mo, w; x = s, se, te),” Phys. Rev. B, vol. 85, p. 033305, Jan 2012. [21] L. Malard, M. Pimenta, G. Dresselhaus, and M. Dresselhaus, “Raman spectroscopy in graphene,” Physics Reports, vol. 473, no. 5, pp. 51 – 87, 2009. [22] F. M. Jingang Wang and M. Sun, “Graphene, hexagonal boron nitride, and their heterostructures: properties and applications,” Royal society of chemistry, vol. 7, pp. 16801–16822, 2017. [23] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. M. de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and raman response of monolayer mos2, mose2, and wse2,” Opt. Express, vol. 21, pp. 4908–4916, Feb 2013. [24] H. Zeng, G.B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spinvalley coupling in atomically thin tungsten dichalcogenides,” Scientific Reports, vol. 3, no. 1, pp. 1608–, 2013. [25] A. V. Kolobov and J. Tominaga, “Twodimensional transitionmetal dichalcogenides,” MRS Bulletin, vol. 42, no. 6, p. 471–471, 2017. [26] M. Sup Choi, G.H. Lee, Y.J. Yu, D.Y. Lee, S. Hwan Lee, P. Kim, J. Hone, and W. Jong Yoo, “Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices,” Nature Communications, vol. 4, no. 1, pp. 1624–, 2013. [27] C. Jin, J. Kim, M. I. B. Utama, E. C. Regan, H. Kleemann, H. Cai, Y. Shen, M. J. Shinner, A. Sengupta, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, “Imaging of pure spinvalley diffusion current in ws2wse2 heterostructures,” Science, vol. 360, no. 6391, pp. 893–896, 2018. [28] T.H. Tsai, Z.Y. Liang, Y.C. Lin, C.C. Wang, K.I. Lin, K. Suenaga, and P.W. Chiu, “Photogating ws2 photodetectors using embedded wse2 charge puddles,” ACS Nano, vol. 14, pp. 4559–4566, Apr. 2020. [29] M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, and T. Mueller, “Photovoltaic effect in an electrically tunable van der waals heterojunction,” Nano Lett., vol. 14, pp. 4785–4791, Aug. 2014. [30] F. Ceballos, M. Z. Bellus, H.Y. Chiu, and H. Zhao, “Ultrafast charge separation and indirect exciton formation in a mos2–mose2 van der waals heterostructure,” ACS Nano, vol. 8, no. 12, pp. 12717–12724, 2014. [31] M. Z. Bellus, F. Ceballos, H.Y. Chiu, and H. Zhao, “Tightly bound trions in transition metal dichalcogenide heterostructures,” ACS Nano, vol. 9, pp. 6459–6464, June 2015. [32] Q. A. Vu, Y. S. Shin, Y. R. Kim, V. L. Nguyen, W. T. Kang, H. Kim, D. H. Luong, I. M. Lee, K. Lee, D.S. Ko, J. Heo, S. Park, Y. H. Lee, and W. J. Yu, “Twoterminal floatinggate memory with van der waals heterostructures for ultrahigh on/off ratio,” Nature Communications, vol. 7, no. 1, pp. 12725–, 2016. |