帳號:guest(3.15.186.140)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張斐青
作者(外文):Chang, Fei-Ching
論文名稱(中文):毫米波鎖相迴路子電路設計
論文名稱(外文):Design of Circuit Blocks in Millimeter-Wave Phase-Locked Loop
指導教授(中文):劉怡君
指導教授(外文):Liu, Jenny Yi-Chun
口試委員(中文):徐碩鴻
李俊興
口試委員(外文):Hsu, Shou-Hung
Li, Chun-Hsing
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:107063545
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:90
中文關鍵詞:毫米波壓控震盪器除頻器
外文關鍵詞:Millimeter-WaveVoltage-Controlled OscillatorFrequency Divider
相關次數:
  • 推薦推薦:0
  • 點閱點閱:125
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
過去,因為CMOS製程操作頻率的限制,毫米波電路大多使用三五族元素的元件製作,但三五族元素的元件成本比較高,使毫米波電路普及受到限制。隨著半導體製程的發展,縮小電晶體的尺寸同時也提高了其操作頻率,提升了CMOS製程製作毫米波電路的可能性。相比於三五族製程,CMOS擁有較高的整合性和較低的成本,使毫米波電路更加普及。而在毫米波系統中,鎖相迴路扮演了一個很重要的角色,廣泛應用於現今的通訊系統,除此之外,更可應用於時脈資料回復及影像感測系統。
本論文探討了鎖相迴路之中的子電路,主要分為震盪器和除頻器。第一個設計為操作在W-Band的壓控震盪器,利用台積電90奈米互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor, CMOS)製程實現。調頻範圍為6.43%,在1 MHz和 10 MHz 的相位雜訊分別為-77.7 dBc/Hz 和 -110.1 dBc/Hz,含輸出緩衝器總共消耗30.36 mW。第二個設計為操作在300-GHz 的二倍頻諧波震盪器,在288.5-GHz得到-12.8 dBm的輸出功率,消耗 21.5 mW,利用台積電40奈米互補式金屬氧化物半導體製程實現。第三個設計為操作在150 GHz的注入鎖定除二除頻器,在-10 dBm的輸入功率下,得到152.49~157.73 GHz的鎖定範圍,總共消耗5.8 mW,使用台積電40奈米互補式金屬氧化物半導體製程實現。
In the past, millimeter wave circuits were usually utilized by III-V semi-conductor technologies because of the operation frequency limitation of CMOS process. But, the cost of III-V semi-conductors is relatively high, which leads to limited popularity of the millimeter-wave circuits. With the development of semi-conductor process, the gate length of CMOS transistor becomes smaller and the operation frequency increases in the meantime, facilitating the possibility of CMOS millimeter-wave circuits. Compared to III-V semi-conductor process, the higher integration capacity and lower cost of CMOS process make millimeter wave circuits more popular. In millimeter-wave systems, phase-locked loop (PLL) plays an important role. In addition to communication systems, PLLs are critical in image sensor systems and Clock and Data Recovery (CDR) circuit.
In this thesis, the critical circuit in PLLs are discussed, mainly the voltage-controlled oscillator (VCO) and the frequency divider. The first design is a VCO operating in W-band in tsmc 90-nm CMOS with 6.43% frequency tuning range. The phase noise are -77.7-dBc/Hz at 1-MHz and -110.1-dBc/Hz at 10-MHz, respectively. The dc power is 30.36 mW including that of the output buffers. The second design is a push-push oscillator operating at 300 GHz in tsmc 40-nm CMOS technology. The output power at 288.5 GHz is -12.8 dBm. The dc power dissipation is 21.5 mW. The last design is a divided-by-two Injection-Locked Frequency Divider (ILFD) operating at 150 GHz implemented in tsmc 40-nm CMOS technology. With -10 dBm input power, the locking range is from 152.49 GHz to 157.73 GHz and the power dissipation is 5.8 mW.
摘要 i
ABSTRACT ii
Contents iii
List of Figures vi
List of Tables xi
Chapter 1 Introduction 1
1.1. Background 1
1.2. Organization 2
Chapter 2 Overview of Phase-Locked Loop 3
2.1. Introduction 3
2.2. System Models of PLL 6
2.2.1 PLL with First-order Loop Filter 6
2.2.2 PLL with Second-order Loop Filter 11
2.2.3 Noise in PLLs 14
2.3. LC-Tank VCO 19
2.3.1 Introduction 19
2.3.2 Specifications of VCO 22
2.3.2.1 Tuning Range 22
2.3.2.2 Phase Noise 23
Chapter 3 A W-Band VCO with LC Source Degeneration in 90-nm CMOS 24
3.1. Introduction 24
3.2. LC Source Degeneration 25
3.3. Varactors and Body-Bias Technique 28
3.4. Proposed Circuit 31
3.5. Simulation and Measurement Results 33
3.6. Discussion and Conclusion 36
Chapter 4 A 300-GHz Phase-locked Loop in 40-nm CMOS 38
4.1. Overall Circuit Architecture 38
4.2. A 300-GHz Transformer-Based Oscillator 39
4.2.1 Introduction 39
4.2.2 Transformer-Based Resonator 40
4.2.3 Maximum Output Power of Harmonic Oscillators 42
4.2.4 Proposed Circuit 46
4.2.5 Simulation and Measurement Results 54
4.2.6 Discussion and Conclusion 58
4.3. A 150-GHz Injection-Locked Frequency Divider 62
4.3.1 Introduction 62
4.3.2 Analysis of Injection-locked Frequency Divider 64
4.3.3 Proposed Circuit 68
4.3.4 Simulation and Measurement Results 72
4.3.5 Discussion and Conclusion 76
4.4. System Consideration 78
4.4.1 Loop Bandwidth Design 78
4.4.2 Experiment Results 80
Chapter 5 Conclusion and Future Work 83
Reference 85
[1] D. B. Leeson, "A simple model of feedback oscillator noise spectrum," in Proceedings of the IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966, doi: 10.1109/PROC.1966.4682.
[2] A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," in IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[3] Y. Lin, K. Lan, Y. Lin and M. Chuang, "94 GHz VCO using negative capacitance technique," 2017 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), San Diego, CA, 2017, pp. 39-40.
[4] Chuan-Wei Tsou;Chi-Chen Chen;Yo-Sheng Lin, “A 57-GHz CMOS VCO with 185.3% tuning-range enhancement using tunable LC source-degeneration,” 2009 International Symposium on VLSI Design,July.2009.
[5] Y. Lin, K. Lan, Y. Lin and Y. Lin, "95/190 GHz push-push VCO in 90 nm CMOS," 2017 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), San Diego, CA, 2017, pp. 37-38.
[6] B. Razavi, RF Microelectronics, 2nd ed. Prentice Hall Press Upper Saddle River, NJ, USA, 2011.
[7] P. Chiang et al., "A 206 ∼ 220 GHz CMOS VCO using body-bias technique for frequency tuning," 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 2015, pp. 1-3.
[8] X. Sun and Q. Li, "A 259.5-GHz Varactor-free VCO in 0.13-μm SiGe BiCMOS Technology," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Guangzhou, China, 2019, pp. 1-3.
[9] Z. M. Tsai, C. S. Lin, C. F. Huang, J. G. J. Chern and H. Wang, "A Fundamental 90-GHz CMOS VCO Using New Ring-Coupled Quad," in IEEE Microwave and Wireless Components Letters, vol. 17, no. 3, pp. 226-228, March 2007..
[10] G. Huang and V. Fusco, "A 94 GHz Wide Tuning Range SiGe Bipolar VCO Using a Self-Mixing Technique," in IEEE Microwave and Wireless Components Letters, vol. 21, no. 2, pp. 86-88, Feb. 2011..
[11] S. Kang and A. M. Niknejad, "A 100GHz active-varactor VCO and a bi-directionally injection-locked loop in 65nm CMOS," 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Seattle, WA, 2013, pp. 231-234.
[12] J. Lee, and Y. Moon, "A design of low power 70 GHz CMOS VCO for wireless communication system," IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 1-2, 2014.
[13] M. Ponton, E. Fernandez, A. Suarez and F. Ramirez, "Harmonic-balance design and analysis of an injection-locked push-push oscillator," 2008 Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits, Malaga, Spain, 2008, pp. 53-56.
[14] E. N. Lima, T. Tanaka and I. Toyoda, "A Ku-Band Injection-Locked Push-Push Oscillator Using Two-Wavelength Ring Resonator," 2018 13th European Microwave Integrated Circuits Conference (EumIC), Madrid, 2018, pp. 357-360.
[15] K. Kawasaki, T. Tanaka and M. Aikawa, "A unilaterally coupled push-push oscillator array using sequential injection-locking," Asia-Pacific Microwave Conference 2011, Melbourne, VIC, Australia, 2011, pp. 868-871.
[16] Y. Shu, H. J. Qian and X. Luo, "A 173 GHz transformer-based push-push oscillator with 11.2% tuning range in 28nm CMOS," 2018 IEEE MTT-S International Wireless Symposium (IWS), Chengdu, China, 2018, pp. 1-4.
[17] D. R. Utomo, D. Park, S. Lee, and J. Hong, “High-Power 268-GHz Push-Push Transformer-Based Oscillator with Capacitive Degeneration,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 7, pp. 612–614, Jul. 2018.
[18] H. Koo et al., “Design and Analysis of 239 GHz CMOS Push-Push Transformer-Based VCO with High Efficiency and Wide Tuning Range,” IEEE Trans. Circuits and Systems-I, vol. 62, no. 7, pp. 1883-1893, July 2015.
[19] A. El-Gouhary and N. M. Neihart, "An Analysis of Phase Noise in Transformer-Based Dual-Tank Oscillators," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 7, pp. 2098-2109, July 2014.
[20] R. Han and E. Afshari, "A CMOS High-Power Broadband 260-GHz Radiator Array for Spectroscopy," in IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3090-3104, Dec. 2013.
[21] S. Shopov, J. Hasch, P. Chevalier, A. Cathelin and S. P. Voinigescu, "A 240GHz Synthesizer in 55nm SiGe BiCMOS," 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), New Orleans, LA, 2015, pp. 1-4.
[22] C.-H. Li, C.-L. Ko, C.-N. Kuo, M.-C. Kuo, and D.-C. Chang, “A 340 GHz triple-push oscillator with differential output in 40 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 12, pp. 863–865, Dec. 2014.
[23] Wei Zhou, Qin Li, “A Quad-Core Coupled VCO in 40nm CMOS Technology,” 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT).
[24] A. H. M. Shirazi, A. Nikpaik, S. Mirabbasi and S. Shekhar “A quadcore-coupled triple-push 295-to-301 GHz source with 1.25 mW peak output power in 65nm CMOS using slow-wave effect”, IEEE Radio Frequency Integrated Circuits Symposium (RFIC) pp.190-193, 2016.
[25] Dongkyo Kim, Sanggeun Jeon,” A WR-3 Band Fundamental Voltage-Controlled Oscillator With a Wide Frequency Tuning Range and High Output Power,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, Issue:7, 2019.
[26] Burak Çatlı; Mona Mostafa Hella,” Triple-Push Operation for Combined Oscillation/Divison Functionality in Millimeter-Wave Frequency Synthesizers”, IEEE J. Solid-State circuits, vol. 45, no. 8, Aug. 2010.
[27] I. -. Lee, C. Wang, C. Ko, Y. Juang and S. Liu, "A 3.6 mW 125.7–131.9 GHz Divide-by-4 Injection-Locked Frequency Divider in 90 nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 22, no. 3, pp. 132-134, March 2012.
[28] S. Jang, Cheng-Chen Liu, Ying-Hsiang Liao and Ren-Kai Yang, "A wide-locking range divide-by-2 LC-tank injection-locked frequency divider," Proceedings of 2010 International Symposium on VLSI Design, Automation and Test, Hsinchu, Taiwan, 2010.
[29] K. Tsai, L. Cho, J. Wu and S. Liu, "3.5mW W-Band Frequency Divider with Wide Locking Range in 90nm CMOS Technology," 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, USA, 2008, pp. 466-628.
[30] P. Mayr, C. Weyers and U. Langann, "A 90GHz 65nm CMOS Injection-Locked Frequency Divider," 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, USA, 2007, pp. 198-596.
[31] K. Tsai and S. Liu, "A 43.7mW 96GHz PLL in 65nm CMOS," 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, USA, 2009, pp. 276-277,277a.
[32] Y. Zhao et al., "A 0.56 THz Phase-Locked Frequency Synthesizer in 65 nm CMOS Technology," in IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 3005-3019, Dec. 2016.
[33] B. Lin and S. Liu, "Analysis and Design of D-Band Injection-Locked Frequency Dividers," in IEEE Journal of Solid-State Circuits, vol. 46, no. 6, pp. 1250-1264, June 2011.
[34] P. Feng and S. Liu, "Divide-by-Three Injection-Locked Frequency Dividers Over 200 GHz in 40-nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 48, no. 2, pp. 405-416, Feb. 2013.
[35] Y. Lin and H. Wang, "Design and Analysis of W-Band Injection-Locked Frequency Divider Using Split Transformer-Coupled Oscillator Technique," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 1, pp. 177-186, Jan. 2018.
[36] Y. Yeh, Y. Liu, H. Chang and K. Chen, "Evaluation of a D-band divide-by-3 injection-locked frequency divider in 65 nm CMOS process," 2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Sendai, 2015.
[37] P. Feng and S. Liu, "A 300 GHz Divide-by-2 ILFD Using Frequency Boosting Technique," in IEEE Microwave and Wireless Components Letters, vol. 23, no. 11, pp. 599-601, Nov. 2013.
[38] 劉深淵、楊清淵, 鎖相迴路, 1st ed. 台中市: 滄海, 民95.
[39] P. Chiang, Z. Wang, O. Momeni and P. Heydari, "A Silicon-Based 0.3 THz Frequency Synthesizer With Wide Locking Range," in IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 2951-2963, Dec. 2014.
[40] M. Seo, M. Urteaga, M. Rodwell and M. Choe, "A 300 GHz PLL in an InP HBT technology," 2011 IEEE MTT-S International Microwave Symposium, Baltimore, MD, 2011, pp. 1-4.
[41] R. Han et al., “A SiGe terahertz heterodyne imaging transmitter with 3.3 mW radiated power and fully-integrated phase-locked loop,” IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 2935–2947, Dec. 2015.
(此全文20260504後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *