|
[1] H. Qin, et al., “SRAM leakage suppression by minimizing standby supply voltage,” in IEEE International Symposium on Quality Electronic Design, pp. 55-60, 2004. [2] K. Nii, et al., “A Low Power SRAM using Auto-Backgate-Controlled MT-CMOS,”in IEEE International Symposium on Low Power Electronics and Design, pp. 293-298, Aug. 1998. [3] C. Morishima, et al., “A 1-V 20-ns 512-Kbit MT-CMOS SRAM with Auto-Power-Cut Scheme Using Dummy Memory Cells,”in IEEE European Solid-State Circuit Conference, pp. 452-455, Sept. 1998. [4] A. G. Hanlon et al., “Content-Addressable and Associative Memory Systems a Survey,” IEEE Transactions on Electronic Computers, vol. EC-15, no.4, pp.509-521, Aug. 1966. [5] C. C. Wang et al., “An Adaptively Dividable Dual-Port BiTCAM for Virus-Detection Processors in Mobile Devices,” IEEE International Solid-State Circuits Conference, pp.390-622, Feb. 2008. [6] J. Li et al., “1 Mb 0.41 µm² 2T-2R Cell Nonvolatile TCAM With Two-Bit Encoding and Clocked Self-Referenced Sensing,” IEEE Journal of Solid-State Circuits, vol. 49, Issue 4, pp. 896-907, Apr. 2014. [7] M. F. Chang et al., “A 3T1R Nonvolatile TCAM Using MLC ReRAM with Sub-1ns Search Time,” IEEE International Solid-State Circuits Conference, pp. 1-3, Feb. 2015. [8] D. Smith et al., “A 3.6ns 1Kb ECL I/O BiCMOS U.V. EPROM,” IEEE International Symposium on Circuits and Systems, vol. 3, pp. 1987-1990, May. 1990. [9] C. Kuo et al., “A 512-kb flash EEPROM embedded in a 32-b microcontroller,” IEEE Journal of Solid-State Circuits, vol. 27, Issue 4, pp. 574-582, Apr. 1992. [10] S. H. Kulkarni et al., “A 4 kb Metal-Fuse OTP-ROM Macro Featuring a 2 V Programmable 1.37 μm2 1T1R Bit Cell in 32 nm High-k Metal-Gate CMOS,” IEEE Journal of Solid-State Circuits, vol. 45, Issue 4, pp. 863-868, Apr. 2010. [11] Y. H. Tsai et al., “45nm Gateless Anti-Fuse Cell with CMOS Fully Compatible Process,” IEEE International Electron Devices Meeting, pp. 95-98, Dec. 2007. [12] Webfeet Inc., “Semiconductor industry outlook,” Non-Volatile Memory Conference, 2002. [13] S. L. Min et al., “Current trends in flash memory technology,” IEEE Asia and South Pacific Conference on Design Automation, pp. 24-27, Jan. 2006. [14] F. Masuoka et al., “New ultra high density EPROM and flash EEPROM with NAND structure cell,” IEEE International Electron Devices Meeting, vol. 33, pp. 552-555, 1987. [15] A. Bergemont et al., “NOR virtual ground (NVG)-a new scaling concept for very high density flash EEPROM and its implementation in a 0.5 um process,” IEEE International Electron Devices Meeting, pp. 15-18, Dec. 1993. [16] D. Kuzum et al., “Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing,” Nano Letters 12 (5), 2179-2186, 2012. [17] B. Chen et al., “Efficient in-memory computing architecture based on crossbar arrays,” IEEE International Electron Devices Meeting, pp. 17.5.1-17.5.4, 2015. [18] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk bitwise operations in emerging non-volatile memories,” ACM/EDAC/IEEE Design Automation Conference, pp. 1-6, 2016. [19] Q. Dong et al., “A 0.3V VDDmin 4+2T SRAM for searching and in-memory computing using 55nm DDC technology,” IEEE Symposium on VLSI Circuits, pp. C160-C161, 2017. [20] J. Zhang, Z. Wang and N. Verma, "In-Memory Computation of a Machine-Learning Classifier in a Standard 6T SRAM Array," in IEEE Journal of Solid-State Circuits, vol. 52, no. 4, pp. 915-924, April 2017. [21] A. Biswas, et al., “Conv-RAM: An energy-efficient SRAM with embedded convolution computation for low-power CNN-based machine learning applications” IEEE International Solid-State Circuits Conference, pp. 488-489, 2018 [22] X. Si et al., “A Twin-8T SRAM Computation-In-Memory Macro for Multiple-Bit CNN-Based Machine Learning” IEEE International Solid-State Circuits Conference, pp. 396-397, 2019 [23] X. Si et al., “A 28nm 64Kb 6T SRAM Computing-in-Memory Macro with 8b MAC Operation for AI Edge Chips” IEEE International Solid-State Circuits Conference, pp. 246-247, 2020 [24] Q. Dong et al., “A 351TOPS/W and 372GOPS Computing-in-Memory SRAM Macro in 7nm FinFET CMOS for Machine-Learning Application” IEEE International Solid-State Circuits Conference, pp. 242-243, 2020 [25] J. Yue et al., “A 65nm 0.39-to-140.3TOPS/W 1-to-12b Unified Neural-Network Processor Using Block-Circulant-Enabled Transpose-Domain Acceleration with 8.1× Higher TOPS/mm2 and 6T HBST-TRAM-Based 2D Data-Reuse Architecture” IEEE International Solid-State Circuits Conference, pp. 138-139,2019
|