帳號:guest(18.118.226.109)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳昱辰
作者(外文):Chen, Yu-Chen
論文名稱(中文):矽基氮化鎵高頻無金感性及主動元件設計、製作與分析
論文名稱(外文):Design, Fabrication and Analysis of GaN-on-Si High-Frequency Au-Free Inductive and Active Devices
指導教授(中文):徐碩鴻
指導教授(外文):Hsu, Shuo-Hung
口試委員(中文):連羿韋
章殷誠
口試委員(外文):Lian, Yi-Wei
Chang, Yin-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:107063541
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:126
中文關鍵詞:矽基氮化鎵高頻無金電感性元件被動元件主動元件
外文關鍵詞:GaN-on-Sihigh frequencyAu-freeinductive devicespassive devicesactive devices
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1039
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
氮化鎵材料有高電子飽和速度、高臨界電場及低本質載子濃度等優點,氮化鋁鎵/氮化鎵材料所形成的異質接面還會形成高濃度的二維電子氣通道(two-dimensional electron gas, 2DEG)。矽基板具有較低的成本以及方便與CMOS電路做整合使得矽基板氮化鎵(GaN-on-Silicon)符合接下來5G世代的需求。
一般的氮化鎵主被動元件都會使用金來降低歐姆接觸電阻和導線寄生電阻,但金的成本較高,尤其是被動元件需要很厚的金屬導電層,不符合經濟效益。除此之外,主動元件在高溫退火後,其金屬表面會變得粗糙,增加上層製程的難度,還可能會往下穿過阻障層並擴散到半導體基板中而導致漏電流的增加。
本實驗將採用無金製程並且搭配低溫退火的方式來取代傳統使用金的製程。在金屬方面選用鋁來取代金,鋁具有成本低和導電性佳的特性,適合拿來做商業用途。本次論文製作了毫米波電路中最常用到的元件規格,在電感方面,4.5圈的電感感值最高可到4nH,1.5圈的電感Q值最高可到10。在傳輸線方面,300μm和600μm傳輸線的return loss都很小,28GHz時大概是-36.9dB和-31.1dB,insertion loss方面大概是-0.36dB和-0.72dB。在主動元件方面,6×75μm的元件其直流特性ID,max為318mA/mm和gm,max為101mS/mm,其高頻特性fT為30.7GHz和fmax為14.5GHz,其功率特性Pout,max為18.72dBm、AP,max為13.08dB和PAEmax為24.56%。


Gallium Nitride material has the advantages of high electron saturation speed, high critical electric field and low intrinsic carrier concentration, etc. The heterojunction formed by AlGaN/GaN will also form a high-concentration two-dimensional electron gas channel. The low cost of the silicon substrate and the possibility of integration with CMOS circuits make the GaN-on-Silicon meet the needs of the 5G generation.
Generally, GaN active and passive devices use gold to reduce Ohmic contact resistance and wire parasitic resistance. However, the cost of gold is high. In particular, passive devices require a thick metal conductive layer, which is not economical. In addition, after the active device is annealed at a high temperature, its metal surface will become rough, increasing the difficulty of the upper layer process, and may also punch through the barrier layer and diffuse into the semiconductor substrate, resulting in an increase in leakage current.
This experiment will use an aluminum process with low temperature annealing to replace the traditional process using gold. Aluminum has the characteristics of low cost and good conductivity, and is suitable for commercial use. In terms of inductor, the inductance value of 4.5 turns can be as high as 4nH, and the Q value of the inductor of 1.5 turns can be as high as 10. In terms of transmission line, the return loss of 300μm and 600μm is very small, about -36.9dB and -31.1dB at 28GHz, and the insertion loss is about -0.36dB and -0.72dB. In terms of active devices, the 6×75μm device has a DC characteristic ID,max of 318mA/mm and gm,max of 101mS/mm, and its high frequency characteristic fT is 30.7GHZ and fmax is 14.5GHZ, its power characteristic Pout,max is 18.72dBm, AP,max is 13.08dB and PAEmax is 24.56%.
摘要 i
Abstract ii
目錄 iii
圖表目錄 vi
表格目錄 x
第一章 緒論 1
1.1 研究動機 1
1.2 論文架構 2
第二章 GaN材料特性 3
2.1 氮化鎵材料 3
2.1.1 電子遷移率與飽和速度 4
2.1.2 寬能隙與本質載子濃度 5
2.1.3 臨界電場與導通電阻 5
2.2 AlGaN/GaN的異質接面 7
2.2.1 二維電子氣(Two-Dimensional Electron Gas, 2DEG) 7
2.2.2 自發性極化效應 8
2.2.3 壓電極化效應 9
2.3 高頻AlGaN/GaN異質接面場效電晶體模型 13
2.4 本章總結 14
第三章 被動元件設計與製程步驟 15
3.1 毫米波電路中的被動元件 15
3.1.1 電容 16
3.1.2 電感 17
3.1.3 傳輸線 17
3.2 文獻回顧 20
3.2.1 RF MEMS被動元件製作於高阻值矽基板[11] 20
3.2.2 製作於SI-GaAs基板上的高性能RF集成被動元件(IPD)的製程優化[19] 22
3.3 鋁製程的優勢 24
3.4 電感與傳輸線的設計與實作 25
3.4.1 黃光微影製程(Photolithography) 27
3.4.2 電性絕緣(Isolation) 29
3.4.3 鈍化層(Passivation) 30
3.4.4 下層金屬(Metal1) 32
3.4.5 鈍化層(Passivation) 34
3.4.6 接線窗口蝕刻(Via1 Etching) 36
3.4.7 上層金屬(Metal2) 38
3.4.8 鈍化層(Passivation) 39
3.4.9 量測窗口蝕刻(Via2 Etching) 41
3.4.10 元件完成實品圖 43
3.5 本章總結 44
第四章 外部參數萃取與去嵌入(De-Embedding) 45
4.1 高頻S參數量測 45
4.2 外部參數萃取與去嵌入(De-Embedding) 46
4.2.1 開路與短路測試法(Open Pad & Short Pad) 47
4.3 元件外部走線與襯墊金屬設計 50
4.4 本章總結 53
第五章 被動元件量測結果與分析 54
5.1 被動元件尺寸參數 54
5.2 電感高頻量測結果與分析 55
5.2.1 不同內徑的影響 55
5.2.2 不同導線寬度的影響 58
5.2.3 不同圈數的影響 60
5.2.4 不同形狀的影響 62
5.2.5 實際電感與理想材料參數電感 65
5.3 傳輸線高頻量測結果與分析 67
5.3.1 不同長度的傳輸線 67
5.3.2 實際傳輸線與理想材料參數傳輸線 70
5.4 匹配網路高頻量測結果與分析 74
5.4.1 50ohm傳輸線並聯電感 74
5.4.2 50ohm傳輸線並聯電感串聯電容 76
5.5 Sonnet EM 模擬萃取製程材料參數 78
5.5.1 50ohm傳輸線 78
5.5.2 n=2.5,w=11μm,ir=20μm電感 80
5.5.3 50ohm傳輸線並聯電感 82
5.5.4 50ohm傳輸線並聯電感串聯電容 83
5.5.5 製程材料特性分析 84
5.6 本章總結 85
第六章 主動元件設計與製程步驟 87
6.1 無金製程的優勢 87
6.2 無金主動元件的設計與實作 88
6.2.1 電性絕緣(Isolation) 90
6.2.2 歐姆接觸(Ohmic Contact) 92
6.2.3 蕭特基閘極(Schottky Gate) 94
6.2.4 鈍化層(Passivation) 96
6.2.5 接線窗口蝕刻(via1 etching) 97
6.2.6 下層金屬(Metal1) 99
6.2.7 鈍化層(Passivation) 100
6.2.8 接線窗口蝕刻(Via2 Etching) 101
6.2.9 上層金屬(Metal2) 103
6.2.10 鈍化層(Passivation) 104
6.2.11 量測窗口蝕刻(Via3 Etching) 105
6.2.12 元件完成實品圖 107
6.3 本章總結 108
第七章 主動元件量測結果與分析 109
7.1 主動元件尺寸參數 109
7.2 傳輸線長度量測法(Transfer Length Method, TLM) 110
7.3 主動元件直流量測結果與分析 112
7.4 主動元件高頻量測結果與分析 117
7.5 主動元件功率量測結果與分析 119
7.6 本章總結 121
第八章 總結 122
8.1 結論 122
8.2 未來工作 122
References 123

[1] Ambacher, "Growth and applications of group III-nitrides, " J. Physics D (Applied Physics), vol. 31, pp. 2653-2710, 1998
[2] Likun Shen, "Advanced polarization-based design of AlGaN/GaN HEMTs, " PhD thesis, University of California, Santa Barbara, 2004.
[3] B. Gelmont, K. Kim, and M. Shur, "Monte carlo simulation of electron transport in gallium nitride, " J. Appl. Phys., 74 (3), pp. 1818-1821, 1993.
[4] B. J. Baliga, "Trends in power semiconductor devices," IEEE Trans. Electron Devices, vol. 43, no. 10, pp. 1717-1731, Oct. 1996, doi: 10.1109/16.536818.
[5] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics, vol.85, pp. 3222-3233, May 1999.
[6] I. Vurgaftman and J. R. Meyer, "Band parameters for nitrogen-containing semiconductors, " J. Appl. Phys., vol. 94, no. 6, pp. 3675–3696, Sep. 2003.
[7] A. Zoroddu, F. Bernardini, P. Ruggerone, and V. Fiorentini, "First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: comparison of local and gradient-corrected density-functional theory," Phys. Rev. B, vol. 64, pp. 045208–045213, 2001
[8] D. Marcon, B. De Jaeger, S. Halder, N. Vranckx, G. Mannaert, M. Van Hove, and S. Decoutere, "Manufacturing challenges of GaN-on-Si HEMTs in a 200 mm CMOS fab, " IEEE Trans. Semiconductor Manufacturing, vol. 26, no. 3, pp. 361-367, Aug. 2013.
[9] Fabio Sacconi, Aldo Di Carlo, P. Lugli, Hadis Morkoc, "Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs." IEEE Trans. Electron Devices, pp. 450-457, March 2001.
[10] Guillermo Gonzalez, University of Miami, "Microwave Transistor Amplifiers: Analysis and Design, 2nd Edition, " Prentice Hall, Inc. Published: 1997
[11] Yonghyun Shim, Member, IEEE, Jean-Pierre Raskin, Member, IEEE, César Roda Neve, Member, IEEE, and Mina Rais-Zadeh, Senior Member, IEEE, "RF MEMS Passives on High-Resistivity Silicon Substrates," IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 23, NO. 12, DECEMBER 2013.
[12] G. M. Rebei, T. Guan-Leng, and J. S. Hayden, "RF MEMS phase shifters: Design and applications, " IEEE Microw. Mag., vol. 3, no. 2, pp. 72–81, Jun. 2002.
[13] Y. Shim, Z. Wu, and M. Rais-Zadeh, “A high-performance continuously tunable MEMS bandpass filter at 1 GHz,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 8, pp. 2439–2447, Aug. 2012.
[14] M. Rais-Zadeh, J. Laskar, and F. Ayazi, “High performance inductors on CMOS-grade trenched silicon substrate,” IEEE Trans. Compon. Packag. Technol., vol. 31, no. 1, pp. 126–134, 2008.
[15] C. L. Goldsmith, Y. Zhimin, S. Eshelman, and D. Denniston, “Performance of low-loss RF MEMS capacitive switches,” IEEE Microw. Guided Wave Lett., vol. 8, no. 8, pp. 269–271, Aug. 1998.
[16] G. Lingpeng, J. K. O. Sin, L. Haitao, and X. Zhibing, “A fully integrated SOI RF MEMS technology for system-on-a-chip applications,” IEEE Trans. Electron Devices, vol. 53, no. 1, pp. 167–172, Jan. 2006.
[17] H. S. Gamble, B.M. Armstrong, S. J. N. Mitchell,Y. Wu,V. F. Fusco, and J. A. C. Stewart, "Low-loss CPW lines on surface stabilized highresistivity silicon, " IEEE Microw. Guided Wave Lett., vol. 9, no. 10, pp. 395–397, Oct. 1999.
[18] K. Ben Ali, C. Roda Neve, A. Gharsallah, and J.-P. Raskin, "Ultrawide frequency range crosstalk into standard and trap-rich high resistivity silicon substrates, " IEEE Trans. Electron Devices, vol. 58, no. 12, pp. 4258–4264, Dec. 2011.
[19] Yang Li, Cong Wang and Nam-Young Kim, "An Optimized Process of High-performance Integrated Passive Devices (IPDs) on SI-GaAs Substrate for RF Applications," 2013 Asia-Pacific Microwave Conference Proceedings.
[20] K. Zoschke, J. Wolf, M. Topper, O. Ehrmann, T. Fritzsch, K. Scherpinski, H. Reichl, and F. J. Schmuckle, “Fabrication of application specific integrated passive devices using wafer level packaging technologies,” IEEE Transactions on Advanced Packaging, vol. 30, no. 3, pp. 359-368, August 2007.
[21] V. Govind, P. Monajemi, L. Carastro, S. Lapushin, C. Russell, S. Dalmia, J. Vickers, V. Sundaram, and G. White, "Design of novel highly integrated passive devices for digital broadcasting satellite / 802.11 home networking solution in liquid crystal polymer (LCP) based organic substrates," 2006 IEEE MTT-S International Microwave Symposium Digest, pp. 1157-1160, June 2006.
[22] K. Liu, R. C. Frye, and R. Emigh, "Band-pass-filter with balun function from IPD technology, " IEEE Electronic Components and Technology Conference, pp. 718-723, May 2008.
[23] C. Wang, J. H. Lee, and N. Y. Kim, "High-performance integrated passive technology by advanced SI-GaAs-based fabrication for RF and microwave applications," Microwave and Optical Technology Letters, vol. 52, no. 3, pp. 618-623, March 2010.
[24] D. Lee, Y. H. Choi, M. Y. Jun, Y. D. Han, H. C. Yoon and S. Shoji, "Membrane sieve using stoichiometric and stress-reduced SiN/SiO/SiN multilayer films and applications to plasma separation," SENSORS, 2012 IEEE, 2012, pp. 1-4, doi: 10.1109/ICSENS.2012.6411404.
[25] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, "The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs," IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 560-566, Mar. 2001.
[26] 池保勇,余志平,石秉学, "CMOS射频集成电路分析与设计," 清华大学出版社, 2006.
[27] K. Shiojima and N. Shigekawa, "Thermal stability of sheet resistance in AlGaN/GaN 2DEG structure, " phys. status solidi (c), vol. 0, no. 1, pp. 397-400, 2003, doi: 10.1002/PSSC.200390071.
[28] A. Messica, U. Meirav, and H. Shtrikman, "Refractory metal-based low-resistance ohmic contacts for submicron GaAs heterostructure devices," Thin Solid Films, vol. 257, no. 1, pp. 54-57, Feb. 1995, doi: 10.1016/0040-6090(94)06346-x.
[29] R. Gong, J. Wang, S. Liu, Z. Dong, M. Yu, C. P. Wen, Y. Cai, and B. Zhang, "Analysis of surface roughness in Ti/Al/Ni/Au ohmic contact to AlGaN/GaN high electron mobility transistors," Appl. Phys. Lett., vol. 97, no. 6, p. 062115, Aug. 2010, doi: 10.1063/1.3479928.
[30] 吳宏騏, "應用於微波/毫米波之矽基板氮化鎵無金高電子遷移率電晶體," 國立清華大學電子工程研究所碩士論文, 2020.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *