|
1. Chen, Q.; Chen, Z.; Liu, D.; He, Z.; Wu, J., Constructing an E-Nose Using Metal-Ion-Induced Assembly of Graphene Oxide for Diagnosis of Lung Cancer via Exhaled Breath. ACS Appl Mater Interfaces 2020, 12 (15), 17713-17724. 2. Güntner, A. T.; Koren, V.; Chikkadi, K.; Righettoni, M.; Pratsinis, S. E., E-Nose Sensing of Low-ppb Formaldehyde in Gas Mixtures at High Relative Humidity for Breath Screening of Lung Cancer? ACS Sensors 2016, 1 (5), 528-535. 3. Jalal, A. H.; Alam, F.; Roychoudhury, S.; Umasankar, Y.; Pala, N.; Bhansali, S., Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare. ACS Sens 2018, 3 (7), 1246-1263. 4. Chen, K.; Gao, W.; Emaminejad, S.; Kiriya, D.; Ota, H.; Nyein, H. Y.; Takei, K.; Javey, A., Printed Carbon Nanotube Electronics and Sensor Systems. Adv Mater 2016, 28 (22), 4397-414. 5. Zampolli, S.; Elmi, I.; Ahmed, F.; Passini, M.; Cardinali, G. C.; Nicoletti, S.; Dori, L., An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications. Sensors and Actuators B: Chemical 2004, 101 (1-2), 39-46. 6. Kim, E.; Lee, S.; Kim, J. H.; Kim, C.; Byun, Y. T.; Kim, H. S.; Lee, T., Pattern recognition for selective odor detection with gas sensor arrays. Sensors (Basel) 2012, 12 (12), 16262-73. 7. Miller, D. R.; Akbar, S. A.; Morris, P. A., Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensors and Actuators B: Chemical 2014, 204, 250-272. 8. Sahm, T., Flame spray synthesis of tin dioxide nanoparticles for gas sensing. Sensors and Actuators B: Chemical 2004, 98 (2-3), 148-153. 9. J. Li , H. F. a. X. J., J. Phys. Chem. C, Multilayered ZnO Nanosheets with 3D Porous Architectures: Synthesis and Gas Sensing. Chem. C 2010, 114, 14684-14691 10. Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R., Metal oxide gas sensors: sensitivity and influencing factors. Sensors (Basel) 2010, 10 (3), 2088-106. 11. Llobet, E.; Ivanov, P.; Vilanova, X.; Brezmes, J.; Hubalek, J.; Malysz, K.; Gràcia, I.; Cané, C.; Correig, X., Screen-printed nanoparticle tin oxide films for high-yield sensor microsystems. Sensors and Actuators B: Chemical 2003, 96 (1-2), 94-104. 12. Tian, H.; Fan, H.; Ma, J.; Liu, Z.; Ma, L.; Lei, S.; Fang, J.; Long, C., Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing. J Hazard Mater 2018, 341, 102-111. 13. Cattabiani, N.; Baratto, C.; Zappa, D.; Comini, E.; Donarelli, M.; Ferroni, M.; Ponzoni, A.; Faglia, G., Tin Oxide Nanowires Decorated with Ag Nanoparticles for Visible Light-Enhanced Hydrogen Sensing at Room Temperature: Bridging Conductometric Gas Sensing and Plasmon-Driven Catalysis. The Journal of Physical Chemistry C 2018, 122 (9), 5026-5031. 14. Miao, J.; Chen, C.; Meng, L.; Lin, Y. S., Self-Assembled Monolayer of Metal Oxide Nanosheet and Structure and Gas-Sensing Property Relationship. ACS Sens 2019, 4 (5), 1279-1290. 15. Kakavelakis, G.; Gagaoudakis, E.; Petridis, K.; Petromichelaki, V.; Binas, V.; Kiriakidis, G.; Kymakis, E., Solution Processed CH3NH3PbI3-xClx Perovskite Based Self-Powered Ozone Sensing Element Operated at Room Temperature. ACS Sens 2018, 3 (1), 135-142. 16. Chen, H.; Bo, R.; Shrestha, A.; Xin, B.; Nasiri, N.; Zhou, J.; Di Bernardo, I.; Dodd, A.; Saunders, M.; Lipton-Duffin, J.; White, T.; Tsuzuki, T.; Tricoli, A., NiO-ZnO Nanoheterojunction Networks for Room-Temperature Volatile Organic Compounds Sensing. Advanced Optical Materials 2018, 6 (22), 1800677. 17. Park, S.; An, S.; Ko, H.; Jin, C.; Lee, C., Synthesis of nanograined ZnO nanowires and their enhanced gas sensing properties. ACS Appl Mater Interfaces 2012, 4 (7), 3650-6. 18. Qin, Y.; Wang, F.; Shen, W.; Hu, M., Mesoporous three-dimensional network of crystalline WO3 nanowires for gas sensing application. Journal of Alloys and Compounds 2012, 540, 21-26. 19. Zou, Y.; Chen, S.; Sun, J.; Liu, J.; Che, Y.; Liu, X.; Zhang, J.; Yang, D., Highly Efficient Gas Sensor Using a Hollow SnO2 Microfiber for Triethylamine Detection. ACS Sens 2017, 2 (7), 897-902. 20. J Chen, K. W., L.Hartman, W.Zhou, H2S Detection by Vertically Aligned CuO Nanowire Array Sensors. J. Phys. Chem. C 2008, 2008 (112), 16017-16021. 21. Park, J.-A.; Moon, J.; Lee, S.-J.; Kim, S. H.; Zyung, T.; Chu, H. Y., Structure and CO gas sensing properties of electrospun TiO2 nanofibers. Materials Letters 2010, 64 (3), 255-257. 22. Lee, E.; Yoon, Y. S.; Kim, D. J., Two-Dimensional Transition Metal Dichalcogenides and Metal Oxide Hybrids for Gas Sensing. ACS Sens 2018, 3 (10), 2045-2060. 23. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 2013, 5 (4), 263-75. 24. H. Liu , A.; T. Neal , Z.; Zhu , Z. L., X. ; Xu , D. T. a. P.; Ye., D., Phosphorene: An Unexplored 2D. ACS Nano 2014, 8 (4), 4033–4041. 25. S. Das , M.; Roelofs, D. a. A., Ambipolar Phosphorene Field Effect. ACS nano 2014, 8 (11), 11730–11738. 26. Li, W.; Chen, R.; Qi, W.; Cai, L.; Sun, Y.; Sun, M.; Li, C.; Yang, X.; Xiang, L.; Xie, D.; Ren, T., Reduced Graphene Oxide/Mesoporous ZnO NSs Hybrid Fibers for Flexible, Stretchable, Twisted, and Wearable NO2 E-Textile Gas Sensor. ACS Sens 2019, 4 (10), 2809-2818. 27. Choudhuri, I.; Sadhukhan, D.; Garg, P.; Mahata, A.; Pathak, B., Lewis Acid–Base Adducts for Improving the Selectivity and Sensitivity of Graphene Based Gas Sensors. ACS Sensors 2016, 1 (4), 451-459. 28. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 2012, 7 (11), 699-712. 29. Toh, R. J.; Sofer, Z.; Luxa, J.; Sedmidubsky, D.; Pumera, M., 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chem Commun (Camb) 2017, 53 (21), 3054-3057. 30. Hien, N. D.; Cuong, N. Q.; Bui, L. M.; Dinh, P. C.; Nguyen, C. V.; Phuc, H. V.; Hieu, N. V.; Jappor, H. R.; Phuong, L. T. T.; Hoi, B. D.; Nhan, L. C.; Hieu, N. N., First principles study of single-layer SnSe2 under biaxial strain and electric field: Modulation of electronic properties. Physica E: Low-dimensional Systems and Nanostructures 2019, 111, 201-205. 31. Shafique, A.; Samad, A.; Shin, Y. H., Ultra low lattice thermal conductivity and high carrier mobility of monolayer SnS2 and SnSe2: a first principles study. Phys Chem Chem Phys 2017, 19 (31), 20677-20683. 32. Gonzalez, J. M.; Oleynik, I. I., Layer-dependent properties ofSnS2andSnSe2two-dimensional materials. Physical Review B 2016, 94 (12). 33. J.DANIELSON, S., 22- THIN-FILM IMMUNOASSAYS. Immunoassay 1996, 505-535. 34. Mukhokosi, E. P.; Krupanidhi, S. B.; Nanda, K. K., Band Gap Engineering of Hexagonal SnSe2 Nanostructured Thin Films for Infra-Red Photodetection. Sci Rep 2017, 7 (1), 15215. 35. Camargo Moreira, O. L.; Cheng, W. Y.; Fuh, H. R.; Chien, W. C.; Yan, W.; Fei, H.; Xu, H.; Zhang, D.; Chen, Y.; Zhao, Y.; Lv, Y.; Wu, G.; Lv, C.; Arora, S. K.; C, O. C.; Heng, C.; Chang, C. R.; Wu, H. C., High Selectivity Gas Sensing and Charge Transfer of SnSe2. ACS Sens 2019, 4 (9), 2546-2552. 36. Cheng, W.-Y.; Fuh, H.-R.; Chang, C.-R., First-Principles Study for Gas Sensing of Defective SnSe2 Monolayers. Applied Sciences 2020, 10 (5), 1623. 37. Pawar, M.; Kadam, S.; Late, D. J., High-Performance Sensing Behavior Using Electronic Ink of 2D SnSe2 Nanosheets. ChemistrySelect 2017, 2 (14), 4068-4075. 38. Pei, T.; Bao, L.; Wang, G.; Ma, R.; Yang, H.; Li, J.; Gu, C.; Pantelides, S.; Du, S.; Gao, H.-j., Few-layer SnSe2 transistors with high on/off ratios. Applied Physics Letters 2016, 108 (5), 053506. 39. Anwar, S.; Gowthamaraju, S.; Mishra, B. K.; Singh, S. K.; Shahid, A., Spray pyrolysis deposited tin selenide thin films for thermoelectric applications. Materials Chemistry and Physics 2015, 153, 236-242. 40. Popescu, M.; Sava, F.; Lőrinczi, A.; Socol, G.; Mihăilescu, I. N.; Tomescu, A.; Simion, C., Structure, properties and gas sensing effect of SnSe2 films prepared by pulsed laser deposition method. Journal of Non-Crystalline Solids 2007, 353 (18-21), 1865-1869. 41. Fernandes, P. A.; Sousa, M. G.; Salomé, P. M. P.; Leitão, J. P.; da Cunha, A. F., Thermodynamic pathway for the formation of SnSe and SnSe2 polycrystalline thin films by selenization of metal precursors. CrystEngComm 2013, 15 (47), 10278. 42. Zhou, X.; Gan, L.; Tian, W.; Zhang, Q.; Jin, S.; Li, H.; Bando, Y.; Golberg, D.; Zhai, T., Ultrathin SnSe2 Flakes Grown by Chemical Vapor Deposition for High-Performance Photodetectors. Adv Mater 2015, 27 (48), 8035-41. 43. Gao, E.; Lin, S.-Z.; Qin, Z.; Buehler, M. J.; Feng, X.-Q.; Xu, Z., Mechanical exfoliation of two-dimensional materials. Journal of the Mechanics and Physics of Solids 2018, 115, 248-262. 44. Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N., Liquid Exfoliation of Layered Materials. Science 2013, 340 (6139), 1226419. 45. Huang, Y.; Xu, K.; Wang, Z.; Shifa, T. A.; Wang, Q.; Wang, F.; Jiang, C.; He, J., Designing the shape evolution of SnSe2 nanosheets and their optoelectronic properties. Nanoscale 2015, 7 (41), 17375-80. 46. Zhang, Y.; Shi, Y.; Wu, M.; Zhang, K.; Man, B.; Liu, M., Synthesis and Surface-Enhanced Raman Scattering of Ultrathin SnSe(2) Nanoflakes by Chemical Vapor Deposition. Nanomaterials (Basel) 2018, 8 (7). 47. Bang, J. H.; Choi, M. S.; Mirzaei, A.; Kwon, Y. J.; Kim, S. S.; Kim, T. W.; Kim, H. W., Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires. Sensors and Actuators B: Chemical 2018, 274, 356-369. 48. Jeong, H.-S.; Park, M.-J.; Kwon, S.-H.; Joo, H.-J.; Song, S.-H.; Kwon, H.-I., Low temperature NO2 sensing properties of RF-sputtered SnO-SnO2 heterojunction thin-film with p-type semiconducting behavior. Ceramics International 2018, 44 (14), 17283-17289. 49. Xu, T.; Liu, Y.; Pei, Y.; Chen, Y.; Jiang, Z.; Shi, Z.; Xu, J.; Wu, D.; Tian, Y.; Li, X., The ultra-high NO2 response of ultra-thin WS2 nanosheets synthesized by hydrothermal and calcination processes. Sensors and Actuators B: Chemical 2018, 259, 789-796. 50. Islam, M. A.; Li, H.; Moon, S.; Han, S. S.; Chung, H. S.; Ma, J.; Yoo, C.; Ko, T. J.; Oh, K. H.; Jung, Y.; Jung, Y., Vertically Aligned 2D MoS2 Layers with Strain-Engineered Serpentine Patterns for High-Performance Stretchable Gas Sensors: Experimental and Theoretical Demonstration. ACS Appl Mater Interfaces 2020, 12 (47), 53174-53183. 51. Cho, B.; Kim, A. R.; Park, Y.; Yoon, J.; Lee, Y. J.; Lee, S.; Yoo, T. J.; Kang, C. G.; Lee, B. H.; Ko, H. C.; Kim, D. H.; Hahm, M. G., Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2. ACS Appl Mater Interfaces 2015, 7 (4), 2952-9. 52. Paolucci, V.; D'Olimpio, G.; Kuo, C. N.; Lue, C. S.; Boukhvalov, D. W.; Cantalini, C.; Politano, A., Self-Assembled SnO2/SnSe2 Heterostructures: A Suitable Platform for Ultrasensitive NO2 and H2 Sensing. ACS Appl Mater Interfaces 2020, 12 (30), 34362-34369. 53. Hong, Y.; Kang, W.-M.; Cho, I.-T.; Shin, J.; Wu, M.; Lee, J.-H., Gas-Sensing Characteristics of Exfoliated WSe2 Field-Effect Transistors. Journal of Nanoscience and Nanotechnology 2017, 17 (5), 3151-3154. 54. Shendage, S. S.; Patil, V. L.; Vanalakar, S. A.; Patil, S. P.; Harale, N. S.; Bhosale, J. L.; Kim, J. H.; Patil, P. S., Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sensors and Actuators B: Chemical 2017, 240, 426-433. 55. Li, X.; Liu, W.; Huang, B.; Liu, H.; Li, X., Layered SnSe2 microflakes and SnSe2/SnO2 heterojunctions for low-temperature chemiresistive-type gas sensing. Journal of Materials Chemistry C 2020. 56. Chen, X.; Chen, X.; Han, Y.; Su, C.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Wei, H.; Yang, Z., Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors. Nanotechnology 2019, 30 (44), 445503. 57. Mukhokosi, E. P.; Roul, B.; Krupanidhi, S. B.; Nanda, K. K., Toward a Fast and Highly Responsive SnSe2-Based Photodiode by Exploiting the Mobility of the Counter Semiconductor. ACS Appl Mater Interfaces 2019, 11 (6), 6184-6194.
|