帳號:guest(52.14.2.251)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳浤民
作者(外文):Wu, Hong-Min
論文名稱(中文):低溫電漿輔助硒化製備二硒化錫薄膜應用於室溫下高靈敏二氧化氮感測器
論文名稱(外文):Growth of SnSe2 Layered Thin Film by Plasma-assisted Selenization for Highly Sensitive NO2 Gas Sensor in Room Temperature
指導教授(中文):邱博文
闕郁倫
指導教授(外文):Chiu, Po-Wen
Cheuh, Yu-Lun
口試委員(中文):葉文冠
蔡淑如
口試委員(外文):Yeh, Wen-Kuan
Tsai, Shu-Ju
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:107063539
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:51
中文關鍵詞:電漿輔助硒化二硒化錫高靈敏室溫二氧化氮氣體感測器
外文關鍵詞:Plasma-assisted SelenizationTin diselenideHighly SensitiveRoom temperatureNitrogen DioxideGas sensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:512
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用電漿輔助硒化製程,製備二硒化錫薄膜以作為氣體感測器應用之反應層,相較於傳統的化學氣相沉積法需要450度以上的溫度,電漿的輔助將能促進硒原子在相對低的溫度下擴散進二氧化錫薄膜合成二硒化錫,顯現了其應用在可撓式電子元件製備上的潛力。
本研究發現合成溫度在250度之低溫電漿輔助硒化合成二硒化錫薄膜對於二氧化氮氣體有高靈敏度,相較於其他氣體有約50倍的差異。為研究最佳的合成條件,本研究發現不同厚度的二硒化錫薄膜內的晶體結構會對於氣體感測能力有直接的影響。研究結果顯示厚度愈薄的硒化錫薄膜,其結構會愈偏向層狀,我們認為層狀結構有利於氣體感測期間的電子傳輸,故有較高的響應,反之,厚度愈厚的硒化錫薄膜則會偏向多晶結構,其中晶界在氣體感測期間會將電子束縛住從而阻礙有效的電子傳輸。所以在我們的研究中,5奈米之二硒化錫薄膜具有最高的二氧化氮響應,在室溫下對濃度為 1 ppm的二氧化氮氣體有263 %的響應。除此之外為了未來應用於實際的偵測元件,本研究也探討如何克服SnSe2的穩定性,發現透過光照能大幅改善二硒化錫薄膜的氣體響應穩定性,針對不同光源與功率,結果顯示使用過短波長與過大功率的光源,會因為氣體脫附速率增加的太大而使氣體響應下降過多,在追求最大感測能力的前提下,我們認為2.5毫瓦之紅光為最佳光源。
最後,我們與儀科中心合作將此二硒化錫氣體感測層結合無線傳輸與顯示之平台,建造出一個具有潛力的戶外氣體感測系統以達到無線監測目的之應用。
In this work, we successfully synthesized Tin diselenide (SnSe2) through a plasma-assisted selenization process as the reactive layer for gas sensor application. Comparison with conventional chemical vapor deposition (CVD) processes which needs a temperature above 450°C, assistance of plasma function facilitates the transformation of Selenium (Se) atoms diffuse into the tin dioxide (SnO2) thin film to synthesize SnSe2 at a relatively low temperature, showing its potential for application in the preparation of flexible device fabrication.
In this study, SnSe2 film is synthesized at 250 °C and exhibits high sensitivity to NO2. Compared to other gases, there is a difference of about 50 times. In order to find out the best synthesis conditions, this study indicated that the crystal structure of SnSe2 thin films with different thicknesses will have a direct impact on the gas sensing ability. The result shows that the layered structure facilitates the electrical pathway for charge carrier transport during the gas sensing reaction, which makes it have a higher gas response. On the contrary, the grain boundaries in the polycrystalline structure act as electron traps, thereby hindering effective electron transport. Therefore, the 5 nm SnSe2 has the highest response, and the response to 1 ppm NO2 is 263 % at room temperature.
In addition, this research also explores how to improve the stability. It is found that photoactivation can greatly improve the gas response stability of SnSe2. The result shows that Using a light source with short wavelength and high power will cause the gas response to decrease dramatically because the gas desorption rate increases too much. The results show that 2.5 mW of red light is the best light source for SnSe2.
Finally, we cooperated with Taiwan Instrument Research Institute (TIRI) to combine SnSe2 with a platform for wireless transmission and display to build a potential outdoor gas sensing system for wireless monitoring applications.
摘要...............................................................I
Abstract .........................................................II
致謝..............................................................III
Contents ........................................................ IV
Table caption .....................................................V
Figure caption ...................................................VI Chapter 1 Introduction ............................................1 1.1 Gas Sensor ....................................................1
1.1.1 Overview of Gas Sensor ......................................1
1.1.2 Mechanism of Gas Sensor .....................................1
1.2 Metal Oxide vs. Two-dimensional (2D) Material .................4
1.2.1 Composition, Crystal phase and Electronic Structure of TMDCs.5
1.2.2 Tin Diselenide ..............................................8
1.3 Manufacturing Process of SnSe2 Thin Films ....................14
1.4 Motivation ...................................................18
Chapter 2 Experiment .............................................20
2.1 Process Flow .................................................20
2.2 Measurement Flow .............................................23
Chapter 3 Results and discussion ................................ 24
3.1 Synthesis and Characterization of SnSe2 ......................24
3.2 Thickness Effect of SnSe2 ....................................29
3.2.1 Gas Sensing Characteristic .................................29
3.2.2 Effect of Structure ........................................32
3.3 Gas Sensor under Photoactivation .............................37
3.4 Circuit integration and application ..........................40
3.4.1 Integration of circuit and wireless transmission system.....40
3.4.2 Application ................................................41
Chapter 4 Summary and future works ...............................43
1. Chen, Q.; Chen, Z.; Liu, D.; He, Z.; Wu, J., Constructing an E-Nose Using Metal-Ion-Induced Assembly of Graphene Oxide for Diagnosis of Lung Cancer via Exhaled Breath. ACS Appl Mater Interfaces 2020, 12 (15), 17713-17724.
2. Güntner, A. T.; Koren, V.; Chikkadi, K.; Righettoni, M.; Pratsinis, S. E., E-Nose Sensing of Low-ppb Formaldehyde in Gas Mixtures at High Relative Humidity for Breath Screening of Lung Cancer? ACS Sensors 2016, 1 (5), 528-535.
3. Jalal, A. H.; Alam, F.; Roychoudhury, S.; Umasankar, Y.; Pala, N.; Bhansali, S., Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare. ACS Sens 2018, 3 (7), 1246-1263.
4. Chen, K.; Gao, W.; Emaminejad, S.; Kiriya, D.; Ota, H.; Nyein, H. Y.; Takei, K.; Javey, A., Printed Carbon Nanotube Electronics and Sensor Systems. Adv Mater 2016, 28 (22), 4397-414.
5. Zampolli, S.; Elmi, I.; Ahmed, F.; Passini, M.; Cardinali, G. C.; Nicoletti, S.; Dori, L., An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications. Sensors and Actuators B: Chemical 2004, 101 (1-2), 39-46.
6. Kim, E.; Lee, S.; Kim, J. H.; Kim, C.; Byun, Y. T.; Kim, H. S.; Lee, T., Pattern recognition for selective odor detection with gas sensor arrays. Sensors (Basel) 2012, 12 (12), 16262-73.
7. Miller, D. R.; Akbar, S. A.; Morris, P. A., Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensors and Actuators B: Chemical 2014, 204, 250-272.
8. Sahm, T., Flame spray synthesis of tin dioxide nanoparticles for gas sensing. Sensors and Actuators B: Chemical 2004, 98 (2-3), 148-153.
9. J. Li , H. F. a. X. J., J. Phys. Chem. C, Multilayered ZnO Nanosheets with 3D Porous Architectures: Synthesis and Gas Sensing. Chem. C
2010, 114, 14684-14691
10. Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R., Metal oxide gas sensors: sensitivity and influencing factors. Sensors (Basel) 2010, 10 (3), 2088-106.
11. Llobet, E.; Ivanov, P.; Vilanova, X.; Brezmes, J.; Hubalek, J.; Malysz, K.; Gràcia, I.; Cané, C.; Correig, X., Screen-printed nanoparticle tin oxide films for high-yield sensor microsystems. Sensors and Actuators B: Chemical 2003, 96 (1-2), 94-104.
12. Tian, H.; Fan, H.; Ma, J.; Liu, Z.; Ma, L.; Lei, S.; Fang, J.; Long, C., Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing. J Hazard Mater 2018, 341, 102-111.
13. Cattabiani, N.; Baratto, C.; Zappa, D.; Comini, E.; Donarelli, M.; Ferroni, M.; Ponzoni, A.; Faglia, G., Tin Oxide Nanowires Decorated with Ag Nanoparticles for Visible Light-Enhanced Hydrogen Sensing at Room Temperature: Bridging Conductometric Gas Sensing and Plasmon-Driven Catalysis. The Journal of Physical Chemistry C 2018, 122 (9), 5026-5031.
14. Miao, J.; Chen, C.; Meng, L.; Lin, Y. S., Self-Assembled Monolayer of Metal Oxide Nanosheet and Structure and Gas-Sensing Property Relationship. ACS Sens 2019, 4 (5), 1279-1290.
15. Kakavelakis, G.; Gagaoudakis, E.; Petridis, K.; Petromichelaki, V.; Binas, V.; Kiriakidis, G.; Kymakis, E., Solution Processed CH3NH3PbI3-xClx Perovskite Based Self-Powered Ozone Sensing Element Operated at Room Temperature. ACS Sens 2018, 3 (1), 135-142.
16. Chen, H.; Bo, R.; Shrestha, A.; Xin, B.; Nasiri, N.; Zhou, J.; Di Bernardo, I.; Dodd, A.; Saunders, M.; Lipton-Duffin, J.; White, T.; Tsuzuki, T.; Tricoli, A., NiO-ZnO Nanoheterojunction Networks for Room-Temperature Volatile Organic Compounds Sensing. Advanced Optical Materials 2018, 6 (22), 1800677.
17. Park, S.; An, S.; Ko, H.; Jin, C.; Lee, C., Synthesis of nanograined ZnO nanowires and their enhanced gas sensing properties. ACS Appl Mater Interfaces 2012, 4 (7), 3650-6.
18. Qin, Y.; Wang, F.; Shen, W.; Hu, M., Mesoporous three-dimensional network of crystalline WO3 nanowires for gas sensing application. Journal of Alloys and Compounds 2012, 540, 21-26.
19. Zou, Y.; Chen, S.; Sun, J.; Liu, J.; Che, Y.; Liu, X.; Zhang, J.; Yang, D., Highly Efficient Gas Sensor Using a Hollow SnO2 Microfiber for Triethylamine Detection. ACS Sens 2017, 2 (7), 897-902.
20. J Chen, K. W., L.Hartman, W.Zhou, H2S Detection by Vertically Aligned CuO Nanowire Array Sensors. J. Phys. Chem. C 2008, 2008 (112), 16017-16021.
21. Park, J.-A.; Moon, J.; Lee, S.-J.; Kim, S. H.; Zyung, T.; Chu, H. Y., Structure and CO gas sensing properties of electrospun TiO2 nanofibers. Materials Letters 2010, 64 (3), 255-257.
22. Lee, E.; Yoon, Y. S.; Kim, D. J., Two-Dimensional Transition Metal Dichalcogenides and Metal Oxide Hybrids for Gas Sensing. ACS Sens 2018, 3 (10), 2045-2060.
23. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 2013, 5 (4), 263-75.
24. H. Liu , A.; T. Neal , Z.; Zhu , Z. L., X. ; Xu , D. T. a. P.; Ye., D., Phosphorene: An Unexplored 2D. ACS Nano 2014, 8 (4), 4033–4041.
25. S. Das , M.; Roelofs, D. a. A., Ambipolar Phosphorene Field Effect. ACS nano 2014, 8 (11), 11730–11738.
26. Li, W.; Chen, R.; Qi, W.; Cai, L.; Sun, Y.; Sun, M.; Li, C.; Yang, X.; Xiang, L.; Xie, D.; Ren, T., Reduced Graphene Oxide/Mesoporous ZnO NSs Hybrid Fibers for Flexible, Stretchable, Twisted, and Wearable NO2 E-Textile Gas Sensor. ACS Sens 2019, 4 (10), 2809-2818.
27. Choudhuri, I.; Sadhukhan, D.; Garg, P.; Mahata, A.; Pathak, B., Lewis Acid–Base Adducts for Improving the Selectivity and Sensitivity of Graphene Based Gas Sensors. ACS Sensors 2016, 1 (4), 451-459.
28. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 2012, 7 (11), 699-712.
29. Toh, R. J.; Sofer, Z.; Luxa, J.; Sedmidubsky, D.; Pumera, M., 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chem Commun (Camb) 2017, 53 (21), 3054-3057.
30. Hien, N. D.; Cuong, N. Q.; Bui, L. M.; Dinh, P. C.; Nguyen, C. V.; Phuc, H. V.; Hieu, N. V.; Jappor, H. R.; Phuong, L. T. T.; Hoi, B. D.; Nhan, L. C.; Hieu, N. N., First principles study of single-layer SnSe2 under biaxial strain and electric field: Modulation of electronic properties. Physica E: Low-dimensional Systems and Nanostructures 2019, 111, 201-205.
31. Shafique, A.; Samad, A.; Shin, Y. H., Ultra low lattice thermal conductivity and high carrier mobility of monolayer SnS2 and SnSe2: a first principles study. Phys Chem Chem Phys 2017, 19 (31), 20677-20683.
32. Gonzalez, J. M.; Oleynik, I. I., Layer-dependent properties ofSnS2andSnSe2two-dimensional materials. Physical Review B 2016, 94 (12).
33. J.DANIELSON, S., 22- THIN-FILM IMMUNOASSAYS. Immunoassay 1996, 505-535.
34. Mukhokosi, E. P.; Krupanidhi, S. B.; Nanda, K. K., Band Gap Engineering of Hexagonal SnSe2 Nanostructured Thin Films for Infra-Red Photodetection. Sci Rep 2017, 7 (1), 15215.
35. Camargo Moreira, O. L.; Cheng, W. Y.; Fuh, H. R.; Chien, W. C.; Yan, W.; Fei, H.; Xu, H.; Zhang, D.; Chen, Y.; Zhao, Y.; Lv, Y.; Wu, G.; Lv, C.; Arora, S. K.; C, O. C.; Heng, C.; Chang, C. R.; Wu, H. C., High Selectivity Gas Sensing and Charge Transfer of SnSe2. ACS Sens 2019, 4 (9), 2546-2552.
36. Cheng, W.-Y.; Fuh, H.-R.; Chang, C.-R., First-Principles Study for Gas Sensing of Defective SnSe2 Monolayers. Applied Sciences 2020, 10 (5), 1623.
37. Pawar, M.; Kadam, S.; Late, D. J., High-Performance Sensing Behavior Using Electronic Ink of 2D SnSe2
Nanosheets. ChemistrySelect 2017, 2 (14), 4068-4075.
38. Pei, T.; Bao, L.; Wang, G.; Ma, R.; Yang, H.; Li, J.; Gu, C.; Pantelides, S.; Du, S.; Gao, H.-j., Few-layer SnSe2 transistors with high on/off ratios. Applied Physics Letters 2016, 108 (5), 053506.
39. Anwar, S.; Gowthamaraju, S.; Mishra, B. K.; Singh, S. K.; Shahid, A., Spray pyrolysis deposited tin selenide thin films for thermoelectric applications. Materials Chemistry and Physics 2015, 153, 236-242.
40. Popescu, M.; Sava, F.; Lőrinczi, A.; Socol, G.; Mihăilescu, I. N.; Tomescu, A.; Simion, C., Structure, properties and gas sensing effect of SnSe2 films prepared by pulsed laser deposition method. Journal of Non-Crystalline Solids 2007, 353 (18-21), 1865-1869.
41. Fernandes, P. A.; Sousa, M. G.; Salomé, P. M. P.; Leitão, J. P.; da Cunha, A. F., Thermodynamic pathway for the formation of SnSe and SnSe2 polycrystalline thin films by selenization of metal precursors. CrystEngComm 2013, 15 (47), 10278.
42. Zhou, X.; Gan, L.; Tian, W.; Zhang, Q.; Jin, S.; Li, H.; Bando, Y.; Golberg, D.; Zhai, T., Ultrathin SnSe2 Flakes Grown by Chemical Vapor Deposition for High-Performance Photodetectors. Adv Mater 2015, 27 (48), 8035-41.
43. Gao, E.; Lin, S.-Z.; Qin, Z.; Buehler, M. J.; Feng, X.-Q.; Xu, Z., Mechanical exfoliation of two-dimensional materials. Journal of the Mechanics and Physics of Solids 2018, 115, 248-262.
44. Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N., Liquid Exfoliation of Layered Materials. Science 2013, 340 (6139), 1226419.
45. Huang, Y.; Xu, K.; Wang, Z.; Shifa, T. A.; Wang, Q.; Wang, F.; Jiang, C.; He, J., Designing the shape evolution of SnSe2 nanosheets and their optoelectronic properties. Nanoscale 2015, 7 (41), 17375-80.
46. Zhang, Y.; Shi, Y.; Wu, M.; Zhang, K.; Man, B.; Liu, M., Synthesis and Surface-Enhanced Raman Scattering of Ultrathin SnSe(2) Nanoflakes by Chemical Vapor Deposition. Nanomaterials (Basel) 2018, 8 (7).
47. Bang, J. H.; Choi, M. S.; Mirzaei, A.; Kwon, Y. J.; Kim, S. S.; Kim, T. W.; Kim, H. W., Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires. Sensors and Actuators B: Chemical 2018, 274, 356-369.
48. Jeong, H.-S.; Park, M.-J.; Kwon, S.-H.; Joo, H.-J.; Song, S.-H.; Kwon, H.-I., Low temperature NO2 sensing properties of RF-sputtered SnO-SnO2 heterojunction thin-film with p-type semiconducting behavior. Ceramics International 2018, 44 (14), 17283-17289.
49. Xu, T.; Liu, Y.; Pei, Y.; Chen, Y.; Jiang, Z.; Shi, Z.; Xu, J.; Wu, D.; Tian, Y.; Li, X., The ultra-high NO2 response of ultra-thin WS2 nanosheets synthesized by hydrothermal and calcination processes. Sensors and Actuators B: Chemical 2018, 259, 789-796.
50. Islam, M. A.; Li, H.; Moon, S.; Han, S. S.; Chung, H. S.; Ma, J.; Yoo, C.; Ko, T. J.; Oh, K. H.; Jung, Y.; Jung, Y., Vertically Aligned 2D MoS2 Layers with Strain-Engineered Serpentine Patterns for High-Performance Stretchable Gas Sensors: Experimental and Theoretical Demonstration. ACS Appl Mater Interfaces 2020, 12 (47), 53174-53183.
51. Cho, B.; Kim, A. R.; Park, Y.; Yoon, J.; Lee, Y. J.; Lee, S.; Yoo, T. J.; Kang, C. G.; Lee, B. H.; Ko, H. C.; Kim, D. H.; Hahm, M. G., Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2. ACS Appl Mater Interfaces 2015, 7 (4), 2952-9.
52. Paolucci, V.; D'Olimpio, G.; Kuo, C. N.; Lue, C. S.; Boukhvalov, D. W.; Cantalini, C.; Politano, A., Self-Assembled SnO2/SnSe2 Heterostructures: A Suitable Platform for Ultrasensitive NO2 and H2 Sensing. ACS Appl Mater Interfaces 2020, 12 (30), 34362-34369.
53. Hong, Y.; Kang, W.-M.; Cho, I.-T.; Shin, J.; Wu, M.; Lee, J.-H., Gas-Sensing Characteristics of Exfoliated WSe2 Field-Effect Transistors. Journal of Nanoscience and Nanotechnology 2017, 17 (5), 3151-3154.
54. Shendage, S. S.; Patil, V. L.; Vanalakar, S. A.; Patil, S. P.; Harale, N. S.; Bhosale, J. L.; Kim, J. H.; Patil, P. S., Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sensors and Actuators B: Chemical 2017, 240, 426-433.
55. Li, X.; Liu, W.; Huang, B.; Liu, H.; Li, X., Layered SnSe2 microflakes and SnSe2/SnO2 heterojunctions for low-temperature chemiresistive-type gas sensing. Journal of Materials Chemistry C 2020.
56. Chen, X.; Chen, X.; Han, Y.; Su, C.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Wei, H.; Yang, Z., Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors. Nanotechnology 2019, 30 (44), 445503.
57. Mukhokosi, E. P.; Roul, B.; Krupanidhi, S. B.; Nanda, K. K., Toward a Fast and Highly Responsive SnSe2-Based Photodiode by Exploiting the Mobility of the Counter Semiconductor. ACS Appl Mater Interfaces 2019, 11 (6), 6184-6194.
(此全文20260126後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *