帳號:guest(3.138.172.183)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳俊豪
作者(外文):Chen, Chun-Hao
論文名稱(中文):奈米鉑修飾氮摻雜石墨烯之氫氣儲存研究
論文名稱(外文):Hydrogen storage of nitrogen doped graphene decorated with nano-platinum
指導教授(中文):邱博文
指導教授(外文):Chiu, Po-Wen
口試委員(中文):黃昆平
胡啟章
口試委員(外文):Huang, Kun-Ping
Hu, Chi-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:107063523
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:62
中文關鍵詞:奈米鉑氮摻雜石墨烯氫氣儲存電化學
外文關鍵詞:nano-platinumnitrogen dopedgraphenehydrogen storageelectrochemical
相關次數:
  • 推薦推薦:0
  • 點閱點閱:83
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究使用台灣工業技術研究院 (Industrial Technology Research Institute, ITRI) 所開發的微波電漿火炬 (Microwave plasma torch, MPT),此設備是利用電漿增強化學氣相沉積法 (Plasma-enhanced chemical vapor deposition, PECVD) 製備石墨烯粉末 (graphene powder, GP)。在研究中可以藉由調整甲烷 (CH4) 與氬氣 (Ar) 的參數控制石墨烯的品質,而石墨烯粉末可以做為鉑分散之載體使用,促使電極擁有產氫與儲氫的催化能力。我們將碳紙塗佈石墨烯粉末作為工作電極,並分別使用鉑線與 Ag/AgCl 作為對電極與參考電極組成三極系統,而電解液為 0.5 M H2SO4,最後為了將鉑分散至工作電極上,我們利用循環伏安法 (CV) 達到摻雜效果,可以看到在極低的鉑含量情況下表現出不錯的產氫與儲氫的催化能力,並且具有 291 m2∙g−1 的電化學活性面積,跟不少文獻相比皆更高,推測是因為利用此方法分散上去的鉑為奈米級粒子。並且近一步使用 FMP(Focus microwave plasma) 利用氮氣電漿製備氮摻雜石墨烯,發現其擁有更好地產氫與儲氫的催化能力。最後將電化學活化後的樣品進一步使用 PCT(Pressure concentration temperature) 量測其氫氣儲存效果,並在量測結果發現在 2.33 wt% 下的 Pt/GP-Ar25 竟然優於商用 10 wt% Pt/C,發現其結果歸功於電化學活化後之奈米 Pt 粒子在樣品上的分散與石墨烯優異的物理吸附特
性。
This research used the Microwave Plasma Torch (MPT) developed by the Industrial Technology Research Institute (ITRI) in Taiwan, which uses a plasma-enhanced chemical vapor deposition (PECVD) method to prepare graphene powder (GP). In the research, the quality of graphene can be controlled by adjusting the parameters of methane (CH4) and argon (Ar), and graphene powder can be used as a carrier for platinum dispersion, so that the electrode has the catalytic ability for hydrogen evolution reaction (HER). The graphene-coated carbon paper was used as the working electrode, and the platinum wire was used as the counter electrode. In 0.5 M H2SO4 electrolyte, a three-pole system was formed with the Ag/AgCl reference electrode, and the Pt was dispersed by cyclic voltammetry (CV) on the working electrode. It is found that it can have a good catalytic ability, and has an electrochemical active surface area(EAS) of 291 m2∙g−1. In this research, we also used FMP to prepare nitrogen-doped graphene with nitrogen plasma and found that it has better catalytic ability for hydrogen evolution reaction(HER). Finally, the electrochemically activated sample was further measured for its hydrogen storage effect by PCT, and in the measurement results, it was found that the Pt/GP Ar25 at 2.33 wt% was better than the commercial 10 wt% Pt/C. It is attributed to the dispersion of nano-Pt particles on the samples after electrochemical activation and the excellent physical adsorption properties of graphene.
誌謝................................................................................................................................ i
摘要................................................................................................................................ ii
Abstract .......................................................................................................................... iii
第 1 章 緒論................................................................................................................... 1
1.1 研究動機........................................................................................................ 1
1.2 研究目的........................................................................................................ 3
第 2 章 文獻回顧與原理 ................................................................................................ 5
2.1 石墨烯製備.................................................................................................... 5
2.2 電漿增強化學氣相沉積法原理....................................................................... 7
2.2.1 化學氣相沉積法 (chemical vapor deposition, CVD) .................... 7
2.2.2 電漿增強化學氣相沉積法 (Plasma-enhanced chemical vapor
deposition, PECVD) ..................................................................... 7
2.3 石墨烯在電化學活化之應用 .......................................................................... 9
2.4 電化學分析原理............................................................................................. 11
2.4.1 氧化還原反應 (oxygen reduction reaction, ORR)......................... 11
2.4.2 法拉第定律 (Faraday’s law) ....................................................... 12
2.4.3 電雙層之機制 ................................................................................ 13
2.5 PCT 分析原理 ............................................................................................... 14
2.5.1 固態儲氫之機制............................................................................. 14
2.5.2 氫溢出效應 (spillover effect) ........................................................ 15
2.5.3 理想氣體方程式............................................................................. 16
第 3 章 實驗方法與儀器 ................................................................................................ 18
3.1 石墨烯製備.................................................................................................... 18
3.1.1 MPT 製備石墨烯........................................................................... 18
3.1.2 FMP 製備氮摻雜石墨烯................................................................ 19
3.2 材料分析........................................................................................................ 21
3.2.1 拉曼光譜分析 (Raman spectroscopy analysis).............................. 21
3.2.2 X 光光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS)..... 22
3.3 HER 實驗配置............................................................................................... 23
3.3.1 電極製備........................................................................................ 23
3.3.2 電化學量測裝置............................................................................. 24
3.4 電化學量測與分析......................................................................................... 24
3.5 PCT 量測與分析............................................................................................ 25
第 4 章 實驗量測結果與分析......................................................................................... 27
4.1 MPT 製備石墨烯粉末之材料分析 ................................................................. 27
4.1.1 沉積位置與石墨烯缺陷密度之關係 ............................................... 27
4.1.2 氣體流率與石墨烯缺陷密度之關係 ............................................... 29
4.2 FMP 製備氮摻雜石墨烯粉末之材料分析 ...................................................... 30
4.3 石墨烯作為分散載體於電化學儲氫之應用 .................................................... 36
4.3.1 GP 於不同缺陷下之電化學活化量測............................................. 37
4.3.2 GP 與不同碳材之電化學活化量測................................................. 39
4.3.3 GP 於不同金屬下之電化學活化量測............................................. 40
4.3.4 氮摻雜在電化學活化量測之影響................................................... 41
4.4 PCT 儲氫量測 ............................................................................................... 44
4.4.1 Pt 裝飾對氫氣儲存之效果 ............................................................. 44
4.4.2 GP 與不同碳材之 PCT 量測.......................................................... 46
4.4.3 氮摻雜對氫氣儲存之效果.............................................................. 49
第 5 章 總結與未來展望 ................................................................................................ 50
參考文獻......................................................................................................................... 52
[1] Z. Yang, J. Ren, Z. Zhang, X. Chen, G. Guan, L. Qiu, Y. Zhang, and H. Peng, “Recent advancement of nanostructured carbon for energy applications,” Chem. Rev., pp. 5159–5223, 2015.
[2] H. Reardon, J. M. Hanlon, R. W. Hughes, A. Godula-Jopek, T. K. Mandalac, and D. H. Gregory, “Emerging concepts in solid-state hydrogen storage: the role of nanomaterials design,” Energy Environ. Sci., pp. 5951–5979, 2012.
[3] J. Ren, N. M. Musyoka, H. W. Langmi, M. Mathe, and S. Liao, “Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review,” Int. J. Hydrogen Energy, pp. 5159–5223, 2017.
[4] A. W. C. van den Berg and C. O. Areán, “Materials for hydrogen storage: current research trends and perspectives,” Chem. Commun., pp. 668–681, 2008.
[5] S. McWhorter, K. O’Malley, J. Adams, G. Ordaz, K. Randolph, and N. T. Stetson, “Moderate temperature dense phase hydrogen storage materials within the us department of energy (DOE) H2 storage program: Trends toward future development,” Crystals, pp. 413–455, 2012.
[6] “DOE technical targets for onboard hydrogen storage for light-duty vehicles,” 2019.
[7] X. B. Zhao, B. Xiao, A. Fletcher, and K. M. Thomas, “Hydrogen adsorption on functionalized nanoporous activated carbons,” J. Phys. Chem. B, pp. 8880–8888, 2005.
[8] G. Sethia and A. Sayari, “Activated carbon with optimum pore size distribution for hydrogen storage,” Carbon N. Y., pp. 289–294, 2016.
[9] N. Kostoglou, C. Koczwara, C. Prehal, V. Terziyska, B. Babic, B. Matovic, G. Constantinides, C. Tampaxis, G. Charalambopoulou, T. Steriotis, S. Hinder, M. Baker, K. Polychronopoulou, C. Doumanidis, O. Paris, C. Mitterer, and C. Rebholz, “Nanoporous activated carbon cloth as a versatile material for hydrogen adsorption, selective gas separation and electrochemical energy storage,” Nanomater. Energy, vol. 40, pp. 49–64, 2017.
[10] B. Panella, M. Hirscher, and S. Roth, “Hydrogen adsorption in different carbon nanostructures,” Carbon N. Y., pp. 2209–2214, 2005.
[11] A. Zolfaghari, P.Pourhossein, and H.Z.Jooya, “The effect of temperature and topological defects on H2 adsorption on carbon nanotubes,” Int. J. Hydrogen Energy, pp. 13250–13254, 2011.
[12] K. L. Lim, H. Kazemian, Z. Yaakob, and W. R. W. Daud, “Solid-state materials and methods for hydrogen storage: a critical review,” Chem. Eng. Technol., pp. 213–226, 2010.
[13] Y. X. Yang, R. K. Singh, and P. A. Webley, “Hydrogen adsorption in transition metal carbon nano-structures,” Adsorption, pp. 265–274, 2008.
[14] N. Kostoglou, V. Tzitzios, A. G.Kontos, K. Giannakopoulos, C. Tampaxis, A. Papavasiliou, G. Charalambopoulou, T. Steriotis, Y. Li, K. Liao, K. Polychronopoulou, C. Mitterer, and C. Rebholz, “Synthesis of nanoporous graphene oxide adsorbents by freeze-drying or microwave radiation: Characterization and hydrogen storage properties,” Int. J. Hydrogen Energy, pp. 6844–6852, 2015.
[15] N. Kostoglou, A. Tarat, I. Walters, V. Ryzhkov, C. Tampaxis, G. Charalambopoulou, T. Steriotis, C. Mitterer, and C. Rebholz, “Few-layer graphene-like flakes derived by plasma treatment: a potential material for hydrogen adsorption and storage,” Microporous Mesoporous Mater., pp. 482–487, 2016.
[16] V. Jain and B. Kandasubramanian, “Functionalized graphene materials for hydrogen storage,” J. Mater. Sci., pp. 1865–1903, 2020.
[17] D. P. Broom, C. J. Webb, K. E. Hurst, P. A. Parilla, T. Gennett, C. M. Brown, R. Zacharia, E. Tylianakis, E. Klontzas, G. E. Froudakis, T. A. Steriotis, P. N. Trikalitis, D. L. Anton, B. Hardy, D. Tamburello, C. Corgnale, B. A. van Hassel, D. Cossement, R. Chahine, and M. Hirscher, “Outlook and challenges for hydrogen storage in nanoporous materials,” Appl. Phys. A, vol. 122, 2016.
[18] R. Chamoun, U. B. Demirci, and P. Miele, “Cyclic dehydrogenation–
(re)hydrogenation with hydrogen-storage materials: An overview,” Energy Technol., pp. 100–117, 2015.
[19] H. T. Hwang and A. Varma, “Hydrogen storage for fuel cell vehicles,” Curr. Opin. Chem. Eng., pp. 42–48, 2014.
[20] C.-Y. Wang, C.-W. Chang, Y.-J. Wu, and A. D. Lueking, “Observation and simulation of hydrogen storage via spillover,” Curr. Opin. Chem. Eng., pp. 116–121, 2018.
[21] D. S. Pyle, E. M. A. Gray, and C. J. Webb, “Hydrogen storage in carbon nanostructures via spillover,” Int. J. Hydrogen Energy, pp. 19098–19113, 2016.
[22] J. H. Guo, S. J. Li, Y. Su, and G. Chen, “Theoretical study of hydrogen storage by spillover on porous carbon materials,” Int. J. Hydrogen Energy, vol. 45, pp. 25900–25911, 2020.
[23] G. M. Psofogiannakis and G. E. Froudakis, “Fundamental studies and perceptions on the spillover mechanism for hydrogen storage,” Chem. Commun., pp. 7933–7943, 2011.
[24] L. Wang and R. T. Yang, “Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spillover,” Catal. Rev., pp. 411–461, 2010.
[25] X. Yu, Z. Tang, D. Sun, L. Ouyang, and M. Zhu, “Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications,” Prog. Mater. Sci., 1-48 2017.
[26] T. Y. Chen, Y. Zhang, L. C. Hsu, A. Hu, Y. Zhuang, C. M. Fan, C. Y. Wang, T. Y. Chung, C. S. Tsao, and H. Y. Chuang, “Crystal shape controlled H2 storage rate in nanoporous carbon composite with ultra-fine Pt nanoparticle,” Sci. Rep., vol. 7, pp. 1–9, 2017.
[27] D. Giasafaki, G. Charalambopoulou, C. Tampaxis, A. Stubos, and T. Steriotis, “Hydrogen sorption properties of Pd-doped carbon molecular sieves,” Int. J. Hydrogen Energy, pp. 9830–9836, 2014.
[28] D. Giasafaki, G. Charalambopoulou, C. Tampaxis, K. Dimos, D. Gournis, A. Stubos, and T. Steriotis, “Comparing hydrogen sorption in different Pd-doped pristine and surface-modified nanoporous carbons,” Carbon N. Y., pp. 1–14, 2016.
[29] P. J. Tsai, C. H. Yang, W. C. Hsu, W. T. Tsai, and J. K. Chang, “Enhancing hydrogen storage on carbon nanotubes via hybrid chemical etching and Pt decoration employing supercritical carbon dioxide fluid,” Int. J. Hydrogen Energy, pp. 6714–6720, 2012.
[30] C. H. Chen, T. Y. Chung, C. C. Shen, M. S. Yu, C. S. Tsao, G. N. Shi, C. C. Huang, M. D. Ger, and W. L. Lee, “Hydrogen storage performance in palladium-doped graphene/carbon composites,” Int. J. Hydrogen Energy, pp. 3681–3688, 2013.
[31] H. Zhou, J. Zhang, J. Zhang, X. Yan, X. Shen, and A. Yuan, “High-capacity roomtemperature hydrogen storage of zeolitic imidazolate framework/graphene oxide promoted by platinum metal catalyst,” Int. J. Hydrogen Energy, pp. 12275–12285, 2015.
[32] H. Zhou, X. Liu, J. Zhang, X. Yan, Y. Liu, and A. Yuan, “Enhanced roomtemperature hydrogen storage capacity in Pt-loaded graphene oxide/hkust-1 composites,” Int. J. Hydrogen Energy, pp. 2160–2167, 2014.
[33] Y. Li and R. T. Yang, “Hydrogen storage on platinum nanoparticles doped on superactivated carbon,” J. Phys. Chem. C, pp. 11086–11094, 2007.
[34] N. P. Stadie, J. J. Purewal, C. C. Ahn, and B. Fultz, “Measurements of hydrogen spillover in platinum doped superactivated carbon,” Langmuir, pp. 15481–15485, 2010.
[35] R. Bhowmick, S. Rajasekaran, D. Friebel, C. Beasley, L. Jiao, H. Ogasawara, H. Dai, B. Clemens, and A. Nilsson, “Hydrogen spillover in Pt-single-walled carbon nanotube composites: Formation of stable c-h bonds,” J. Am. Chem. Soc., pp. 5580–5586, 2011.
[36] J. L. Blackburn, C. Engtrakul, J. B. Bult, K. Hurst, Y. Zhao, Q. Xu, P. A. Parilla, L. J. Simpson, J. D. R. Rocha, M. R. Hudson, C. M. Brown, and T. Gennett, “Spectroscopic identification of hydrogen spillover species in ruthenium-modified high surface area carbons by diffuse reflectance infrared fourier transform spectroscopy,” J. Phys. Chem. C, pp. 26744–26755, 2012.
[37] X. M. Liu, Y. Tang, E. S. Xu, T. C. Fitzgibbons, G. S. Larsen, H. R. Gutierrez, H. H. Tseng, M. S. Yu, C. S. Tsao, J. V. Badding, V. H. Crespi, and A. D. Lueking, “Evidence for ambient-temperature reversible catalytic hydrogenation in Pt-doped carbons,” Nano Lett., pp. 137–141, 2013.
[38] C.-S. Tsao, Y. Liu, M. Li, Y. Zhang, J. B. Leao, H. W. Chang, M. S. Yu, and S. H. Chen, “Neutron scattering methodology for absolute measurement of roomtemperature hydrogen storage capacity and evidence for spillover effect in a Ptdoped activated carbon,” J. Phys. Chem. Lett., pp. 1569–1573, 2010.
[39] C. S. Tsao, Y. Liu, H. Y. Chuang, H. H. Tseng, T. Y. Chen, C. H. Chen, M. S. Yu, Q. Li, A. Lueking, and S. H. Chen, “Hydrogen spillover effect of Pt-doped activated carbon studied by inelastic neutron scattering,” J. Phys. Chem. Lett., pp. 2322–2325, 2011.
[40] Y. Liu, C. M. Brown, D. A. Neumann, D. B. Geohegan, A. A. Puretzky, C. M. Rouleau, H. Hu, D. S. Barnett, P. O. Krasnov, and B. I. Yakobson, “Metal-assisted hydrogen storage on Pt-decorated single-walled carbon nanohorns,” Carbon N. Y., pp. 4953–4964, 2012.
[41] Z. Geng, D. Wang, C. Zhang, X. Zhou, H. Xin, X. Liu, and M. Cai, “Spillover enhanced hydrogen uptake of Pt/Pd doped corncob-derived activated carbon with ultra-high surface area at high pressure,” Int. J. Hydrogen Energy, pp. 13643–13649, 2014.
[42] R. Zacharia, S. Rather, S. W. Hwang, and K. S. Nahm, “Spillover of physisorbed hydrogen from sputter-deposited arrays of platinum nanoparticles to multi-walled carbon nanotubes,” Chem. Phys. Lett., pp. 286–291, 2007.
[43] C. S. Tsao, Y. R. Tzeng, M. S. Yu, C. Y. Wang, H. H. Tseng, T. Y. Chung, H. C. Wu, T. Yamamoto, K. Kaneko, and S. H. Chen, “Effect of catalyst size on hydrogen storage capacity of Pt-impregnated active carbon via spillover,” J. Phys. Chem. Lett., pp. 1060–1063, 2010.
[44] A. A. Nair, R. Sundara, and N. Anitha, “Hydrogen storage performance of palladium nanoparticles decorated graphitic carbon nitride,” Int. J. Hydrogen Energy, pp. 3259–3267, 2015.
[45] N. R. Stuckert, L. Wang, and R. T. Yang, “Characteristics of hydrogen storage by spillover on Pt-doped carbon and catalyst-bridged metal organic framework,” Langmuir, pp. 11963–11971, 2010.
[46] Y. Jeong and T. M. Chung, “Mono-dispersed transition metal nanoparticles on boron-substituted carbon support and applications in hydrogen storage,” Carbon N. Y., pp. 140–146, 2011.
[47] P. Kundu, C. Nethravathi, P. A. Deshpande, M. Rajamathi, G. Madras, and N. Ravishankar, “Ultrafast microwave-assisted route to surfactant-free ultrafine Pt nanoparticles on graphene: Synergistic co-reduction mechanism and high catalytic activity,” Chem. Mater., pp. 2772–2780, 2011.
[48] P. Jain, D. A. Fonseca, E. Schaible, and A. D. Lueking, “Hydrogen uptake of platinum-doped graphite nanofibers and stochastic analysis of hydrogen spillover,” J. Phys. Chem. C, pp. 1788–1800, 2007.
[49] L. Wang and R. T. Yang, “New sorbents for hydrogen storage by hydrogen spillover–a review,” Energy Environ. Sci., vol. 1, pp. 268–279, 2008.
[50] H. Chen, L. Wang, J. Yang, and R. T. Yang, “Investigation on hydrogenation of metal organic frameworks hkust-1, mil-53 and zif-8 by hydrogen spillover,” J. Phys. Chem. C, pp. 7565–7576, 2013.
[51] C. H. Chen and C. C. Huang, “Effect of surface characteristics and catalyst loaded amount on hydrogen storage in carbon nanotubes,” Microporous Mesoporous Mater., pp. 553–560, 2008.
[52] Y. Suttisawat, P. Rangsunvigit, B. Kitiyanan, M. Williams, P. Ndungu, M. Lototskyy, A. Nechaev, V. Linkov, and S. Kulprathipanja, “Investigation of hydrogen storage capacity of multi-walled carbon nanotubes deposited with Pd or V,” Int. J. Hydrogen Energy, pp. 6669–6675, 2009.
[53] H. Nishihara, T. Simura, and T. Kyotani, “Enhanced hydrogen spillover to fullerene at ambient temperature,” Chem. Commun., pp. 3327–3330, 2018.
[54] W. Karim, C. Spreafico, A. Kleibert, J. Gobrecht, J. VandeVondele, Y. Ekinci, and J. A. van Bokhoven, “Catalyst support effects on hydrogen spillover,” Nature, pp. 68–71, 2017.
[55] S. Nachimuthu, P. J. Lai, and J. C. Jiang, “Efficient hydrogen storage in boron doped graphene decorated by transition metals –a first-principles study,” Carbon N. Y., pp. 132–140, 2014.
[56] L. Wang, F. H. Yang, R. T. Yang, and M. A. Miller, “Effect of surface oxygen groups in carbons on hydrogen storage by spillover,” Ind. Eng. Chem. Res., pp. 2920–2926, 2009.
[57] E. Dı́az, M. León, and S. Ordóneez, “Hydrogen adsorption on Pd-modified carbon nanofibres:influence of cnf surface chemistry and impregnation procedure,” Int. J. Hydrogen Energy, pp. 4576–4581, 2010.
[58] Q. Li and A. D. Lueking, “Effect of surface oxygen groups and water on hydrogen spillover in Pt-doped activated carbon,” J. Phys. Chem. C, pp. 4273–4282, 2011.
[59] T. Y. Chung, C. S. Tsao, H.-P. Tseng, C. H. Chen, and M. S. Yu, “Effects of oxygen functional groups on the enhancement of the hydrogen spillover of Pd-doped activated carbon,” J. Colloid Interface Sci., pp. 98–105, 2015.
[60] N. Kostoglou, C. W. Liao, C. Y. Wang, J. N. Kondo, C. Tampaxis, T. Steriotis, K. Giannakopoulos, A. G. Kontos, S. Hinder, M. Baker, E. Bousser, A. Matthews, C. Rebholz, and C. Mitterer, “Effect of Pt nanoparticle decoration on the H2 storage performance of plasma-derived nanoporous graphene,” Carbon, pp. 294–305, 2021.
[61] A. Ursua, L. M. Gandia, and P. Sanchis, “Hydrogen production from water electrolysis: Current status and future trends,” Proceedings of the IEEE, pp. 410–426, 2012.
[62] R. Subbaraman, D. Tripkovic, K. C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, and N. M. Markovic, “Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts,” Nat. Mater., pp. 550–557, 2012.
[63] C. G. M. Guio, L. A. Stern, and X. Hu, “Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution,” Chem. Soc. Rev., pp. 6555–6569, 2014.
[64] J. Kibsgaard, T. F. Jaramillo, and F. Besenbacher, “Building an appropriate activesite motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2- clusters,” Nat. Chem., pp. 248–253, 2014.
[65] D. Kong, H. Wang, Z. Lu, and Y. Cui, “CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction,” J. Am. Chem. Soc., pp. 4897–4900, 2014.
[66] Z. Zhang, B. Lu, J. Hao, W. Yanga, and J. Tang, “FeP nanoparticles grown on graphene sheets as highly active non-precious-metal electrocatalysts for hydrogen evolution reaction,” Chem. Commun., pp. 11554–11557, 2014.
[67] F. Jiao and H. Frei, “Nanostructured cobalt and manganese oxideclusters as efficient wateroxidationcatalysts,” Energ. Environ. Sci., pp. 1018–1027, 2010.
[68] D. Merki and X. Hu, “Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts,” Chem. Commun, pp. 3878–3888, 2011.
[69] W. Cui, Q. Liu, N. Cheng, A. M. Asiricd, and X. Sun, “Activated carbon nanotubes: a highly-active metal-free electrocatalyst for hydrogen evolution reaction,” Chem. Commun., pp. 9340–9342, 2014.
[70] R. K. Das, Y. Wang, S. V. Vasilyeva, E. Donoghue, I. Pucher, G. Kamenov, H. P. Cheng, and A. G. Rinzler, “Extraordinary hydrogen evolution and oxidation reaction activity from carbon nanotubes and graphitic carbons,” Acs Nano, pp. 8447–8456, 2014.
[71] W. Zhou, Y. Zhou, L. Yang, J. Huang, Y. Ke, K. Zhou, L. Lia, and S. Chen, “Ndoped carbon-coated cobalt nanorod arrays supported on a titanium mesh as highly active electrocatalysts for the hydrogen evolution reaction,” J. Mater. Chem. A, pp. 1915–1919, 2015.
[72] Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, “MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction,” J. Am. Chem. Soc., pp. 7296–7299, 2011.
[73] W. Sheng, Z. Zhuang, M. Gao, J. Zheng, J. G. Chen, and Y. Yan, “Correlating hydrogen oxidation and evolution activity on platinum at different ph with measured hydrogen binding energy,” Nat. Commun., vol. 6, pp. 1–6, 2015.
[74] Z. M. Ao, Q. Jiang, R. Q. Zhang, T. T. Tan, and S. Li, “Al doped graphene: A promising material for hydrogen storage at room temperature,” J. Appl. Phys., vol. 105, 2009.
[75] H. Lee, J. Ihm, M. L. Cohen, and S. G. Louie, “Calcium-decorated graphene-based nanostructures for hydrogen storage,” Nano Lett., pp. 793–798, 2010.
[76] O. Faye, U. Eduok, J. Szpunar, B. Szpunar, A. Samoura, and A. Beye, “Hydrogen storage on bare Cu atom and Cu-functionalized boron-doped graphene: A first principles study,” Int. J. Hydrogen Energy, vol. 42, pp. 4233–4243, 2016.
[77] D. Kim, S. Lee, Y. Hwang, K. H. Yun, and Y. C. Chung, “Hydrogen storage in Li dispersed graphene with stonee-wales defects: A first-principles study,” Int. J. Hydrogen Energy, pp. 13189–13194, 2014.
[78] F. D. Wang, F. Wang, N. N. Zhang, Y. H. Li, S. Tang, H. Sun, Y. F. Chang, and R. S. Wang, “High-capacity hydrogen storage of Na-decorated graphene with boron substitution: First-principles calculations,” Chem. Phys. Lett., pp. 212–216, 2013.
[79] Y. Wang, J. Liu, K. Wang, T. Chen, X. Tan, and C. M. Li, “Hydrogen storage in Ni-B nanoalloy-doped 2D graphene,” Int. J. Hydrogen Energy, pp. 12950–12954, 2011.
[80] V. B. Parambhath, R. Nagar, and S. Ramaprabhu, “Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene,” Langmuir, pp. 7826−7833, 2012.
[81] A. Lebon, J. Carrete, L. Gallego, and A. Vega, “Ti-decorated zigzag graphene nanoribbons for hydrogen storage. a van der waals-corrected density-functional study,” Int. J. Hydrogen Energy, pp. 1–9, 2015.
[82] K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun., pp. 351–355, 2008.
[83] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and ntrinsic strength of monolayer raphene,” Science, pp. 385–388, 2008.
[84] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. uoff, “Graphene based ultracapacitors,” Nano Lett., pp. 3498–3502, 2008.
[85] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior hermal conductivity of single-layer raphene,” Nano Lett., pp. 902–907, 2008.
[86] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., pp. 183–191, 2007.
[87] V. C. T. M. J. Allen and R. B. Kaner, “Honeycomb carbon: a review of graphene,” Chem. Rev., pp. 132–145, 2010.
[88] J. T. Clarke, “Surface area measurement of graphite using the gamma-radiation of KR85,” J. Phys. Chem., vol. 68, 1964.
[89] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, pp. 666–669, 2004.
[90] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, pp. 1558–1565, 2007.
[91] G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol., pp. 270–274, 2008.
[92] K. H. Kim, M. Yang, K. M. Cho, Y. S. Jun, S. Lee, and H. T. Jung, “High quality reduced graphene oxide through repairing with multi-layered graphene ball nanostructures.,” Scientific Reports, vol. 3, pp. 1–8, 2013.
[93] A. Dato, V. Radmilovic, Z. Lee, J. Phillips, and M. Frenklach, “Substrate-free gasphase synthesis of graphene sheets,” Scientific Reports, pp. 2012–2016, 2008.
[94] J. O. M. Bockris, I. A. Ammar, and A. K. M. S. Huq, “The mechanism of the hydrogen evolution reaction on platinum, silver and tungsten surfaces in acid solutions,” J. Phys. Chem., pp. 879–886, 1957.
[95] M. Chhetri, M. Rana, B. Loukya, P. K. Patil, R. Datta, and U. K. Gautam, “Mechanochemical synthesis of free-standing platinum nanosheets and their electrocatalytic properties,” Adv. Mater, pp. 4430–4437, 2015.
[96] G. R. Xu, J. J. Hui, T. Huang, Y. Chen, and J. M. Lee, “Platinum nanocuboids supported on reduced graphene oxide as efficient electrocatalyst for the hydrogen evolution reaction,” Power Sources, pp. 393–399, 2015.
[97] W. Sheng, Z. Zhuang, M. Gao, J. Zheng, J. G. Chen, and Y. Yan, “Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy,” Nat. Commun., 2015.
[98] Z. Li, R. Ge, J. Su, and L. Chen, “Recent progress in low pt content electrocatalysts for hydrogen evolution reaction,” Adv. Mater. Interfaces, vol. 7, July 2020.
[99] H. Huang, W. Zhang, Y. Gan, X. Zhang, and J. Tu, “Carbon nanotubes as a secondary support of catalyst layer in oxygen diffusion electrode and their electrochemical properties,” Chinese J. Chem. Phys., pp. 428–432, 2005.
[100] K. I. Ota, S. Nishigori, and N. Kamiya, “Dissolution of platinum anodes in sulfuric acid solution,” J. Electroanal. Chem., pp. 405–415, 1988.
[101] M. Tian, C. Cousins, D. Beauchemin, Y. Furuya, A. Ohma, and G. Jerkiewicz, “Influence of the working and counter electrode surface area ratios on the dissolution of platinum under electrochemical conditions,” ACS Catal., p. 5108–5116, 2016.
[102] Y. S. Horn, W. C. Sheng, S. Chen, P. J. Ferreira, E. F. Holby, and D. Morgan, “Instability of supported platinum nanoparticles in low-temperature fuel cells,” Top. Catal., pp. 285–305, 2007.
[103] G. Dong, M. Fang, H. Wang, S. Yip, H. Y. Cheung, F. Wang, C. Y. Wong, S. T. Chu, and J. C. Ho, “Insight into the electrochemical activation of carbon-based cathodes for hydrogen evolution reaction,” J. Mater. Chem. A, pp. 13080–13086, 2015.
[104] 胡啟章, 電化學原理與方法.
[105] 蘇順發, “儲氫材料,” 2013. https://ejournal.stpi.narl.org.tw/sd/download?source=10203-
02.pdfvlId=72B3C8B9-AA4A-46EC-A5AA-FE4E51C4333Fnd=1ds=1.
[106] H. Nishihara, T. Simura, and T. Kyotani, “Enhanced hydrogen spillover to fullerene at ambient temperature,” Chem. Commun., pp. 3327–3330, 2018.
[107] Y. W. Chi, C. C. Hua, K. P. Huang, H. H. Shen, and R. Muniyandi, “Manipulation of defect density and nitrogen doping on few-layer graphene sheets using the plasma methodology for electrochemical applications,” Electrochim. Acta, pp. 144–153, 2016.
[108] E. J. Biddinger, D. von Deak, and U. S. Ozkan, “Nitrogen-containing carbon nanostructures as oxygen-reduction catalysts,” Top. Catal., pp. 1566–1574, 2009.
[109] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene raman spectroscopy,” Nano Lett., pp. 751–758, 2010.
[110] P. Y. Teng, C. C. Lu, K. A. Hasegawa, Y. C. Lin, C. H. Yeh, K. Suenaga, and P. W. Chiu, “Remote catalyzation for direct formation of graphene layers on oxides,” Nano Lett., pp. 1379–1384, 2012.
[111] C. L. Do, T. S. Pham, N. P. Nguyen, and V. Q. Tran, “Properties of Pt/C nanoparticle catalysts synthesized by electroless deposition for proton exchange membrane fuel cell,” Adv. Nat. Sci., vol. 4, 2013.
[112] P. Y. Huang, C. S. R. Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, “Grains and grain boundaries in single-layer graphene atomic patchwork quilts,” Nature, pp. 389–392, 2011.
[113] Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S. S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries
in graphene grown by chemical vapour deposition,” Nat. Mater., pp. 443–449, 2011.
[114] A. W. Tsen, L. Brown, M. P. Levendorf, F. Ghahari, P. Y. Huang, R. W. Havener, C. S. R. Vargas, D. A. Muller, P. Kim, and J. Park, “Tailoring electrical transport across grain boundaries in polycrystalline graphene,” Science, pp. 1143–1146, 2012.
[115] G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. V. D. Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor–deposited graphene and grain boundaries,” Science, pp. 1073–1076, 2013.
[116] H. I. Rasool, C. Ophus, W. S. Klug, A. Zettl, and J. K. Gimzewski, “Measurement of the intrinsic strength of crystalline and polycrystalline graphene,” Nat. Commun., vol. 4, pp. 1–7, 2013.
[117] K. R. Cooper, “In situ PEMFC electrochemical surface area and catalyst utilization measurement,” 2017. https://www.scribner.com/faq/1-in-situ-pem-fcelectrochemical-surface-area-and-catalyst-utilization-measurement/.
[118] I. Takahashi and S. S. Kocha, “Examination of the activity and durability of PEMFC catalysts in liquid electrolytes,” J. Power Sources, pp. 6312–6322, 2010.
[119] A. Pozio, M. Francesco, A. Cemmi, F. Cardellini, and L. Giorgi, “Comparison of high surface Pt/C catalysts by cyclic voltammetry,” J. Power Sources, pp. 13–19,2002.
[120] A. M. Chaparro, A. J. Martín, M. A. Folgado, B. Gallardo, and L. Daza, “Comparative analysis of the electroactive area of Pt/C PEMFC electrodes in liquid and solid polymer contact by underpotential hydrogen adsorption/desorption,” Int. J. Hydrogen energy, pp. 4838–4846, 2009.
[121] A. S. Aricò, A. Stassi, E. Modica, R. Ornelas, I. Gatto, E. Passalacqua, and V. Antonucci, “Performance and degradation of high temperature polymer electrolyte fuel cell catalysts,” J. Power Sources, pp. 525–536, 2008.
[122] O. V. Cherstiouk, A. N. Simonov, N. S. Moseva, S. V. Cherepanova, P. A. Simonov, V. I. Zaikovskii, and E. R. Savinova, “Microstructure effects on the electrochemical corrosion of carbon materials and carbon-supported Pt catalysts,” Electrochim. Acta, pp. 8453–8460, 2010.
[123] J. Perez, E. R. Gonzalez, and E. A. Ticianelli, “Oxygen electrocatalysis on thin porous coating rotating platinum electrodes,” Electrochim. Acta, pp. 1329–1339, 1998.
[124] G. Tamizhmani, J. P. Dodelet, and D. Guay, “Crystallite size effects of carbonsupported platinum on oxygen reduction in liquid acids,” J. Electrochem. Soc., vol. 143, January 1996.
[125] J. Fournier, G. Faubert, J. Y. Tilquin, R. Coté, D. Guay, and J. P. Dodelet, “High-performance, low Pt content catalysts for the electroreduction of oxygen in polymer-electrolyte fuel cells,” J. Electrochem. Soc., vol. 144, January 1997.
[126] F. Gloaguen, F. Andolfatto, R. Durand, and P. Ozil, “Kinetic study of electrochemical reactions at catalyst-recast ionomer interfaces from thin active layer modelling,” J. Appl. Electrochem., pp. 863–869, 1994.
[127] M. Ciureanu and H. Wang, “Electrochemical impedance study of electrodemembrane assemblies in PEM fuel cells: I. electro-oxidation of H2 and H2/CO mixtures on Pt-based gas-diffusion electrodes,” J. Electrochem. Soc., vol. 146, pp. 4031–4040, 1999.
[128] R. Sugimoto, Y. Segawa, A. Suzuta, Y. Kunisada, T. Uchida, K. Yamazaki, and K. Gohara, “Single pt atoms on n-doped graphene: Atomic structure and local electronic states,” J. Phys. Chem. C, p. 2900–2906, 2021.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *