|
[1] Z. Yang, J. Ren, Z. Zhang, X. Chen, G. Guan, L. Qiu, Y. Zhang, and H. Peng, “Recent advancement of nanostructured carbon for energy applications,” Chem. Rev., pp. 5159–5223, 2015. [2] H. Reardon, J. M. Hanlon, R. W. Hughes, A. Godula-Jopek, T. K. Mandalac, and D. H. Gregory, “Emerging concepts in solid-state hydrogen storage: the role of nanomaterials design,” Energy Environ. Sci., pp. 5951–5979, 2012. [3] J. Ren, N. M. Musyoka, H. W. Langmi, M. Mathe, and S. Liao, “Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review,” Int. J. Hydrogen Energy, pp. 5159–5223, 2017. [4] A. W. C. van den Berg and C. O. Areán, “Materials for hydrogen storage: current research trends and perspectives,” Chem. Commun., pp. 668–681, 2008. [5] S. McWhorter, K. O’Malley, J. Adams, G. Ordaz, K. Randolph, and N. T. Stetson, “Moderate temperature dense phase hydrogen storage materials within the us department of energy (DOE) H2 storage program: Trends toward future development,” Crystals, pp. 413–455, 2012. [6] “DOE technical targets for onboard hydrogen storage for light-duty vehicles,” 2019. [7] X. B. Zhao, B. Xiao, A. Fletcher, and K. M. Thomas, “Hydrogen adsorption on functionalized nanoporous activated carbons,” J. Phys. Chem. B, pp. 8880–8888, 2005. [8] G. Sethia and A. Sayari, “Activated carbon with optimum pore size distribution for hydrogen storage,” Carbon N. Y., pp. 289–294, 2016. [9] N. Kostoglou, C. Koczwara, C. Prehal, V. Terziyska, B. Babic, B. Matovic, G. Constantinides, C. Tampaxis, G. Charalambopoulou, T. Steriotis, S. Hinder, M. Baker, K. Polychronopoulou, C. Doumanidis, O. Paris, C. Mitterer, and C. Rebholz, “Nanoporous activated carbon cloth as a versatile material for hydrogen adsorption, selective gas separation and electrochemical energy storage,” Nanomater. Energy, vol. 40, pp. 49–64, 2017. [10] B. Panella, M. Hirscher, and S. Roth, “Hydrogen adsorption in different carbon nanostructures,” Carbon N. Y., pp. 2209–2214, 2005. [11] A. Zolfaghari, P.Pourhossein, and H.Z.Jooya, “The effect of temperature and topological defects on H2 adsorption on carbon nanotubes,” Int. J. Hydrogen Energy, pp. 13250–13254, 2011. [12] K. L. Lim, H. Kazemian, Z. Yaakob, and W. R. W. Daud, “Solid-state materials and methods for hydrogen storage: a critical review,” Chem. Eng. Technol., pp. 213–226, 2010. [13] Y. X. Yang, R. K. Singh, and P. A. Webley, “Hydrogen adsorption in transition metal carbon nano-structures,” Adsorption, pp. 265–274, 2008. [14] N. Kostoglou, V. Tzitzios, A. G.Kontos, K. Giannakopoulos, C. Tampaxis, A. Papavasiliou, G. Charalambopoulou, T. Steriotis, Y. Li, K. Liao, K. Polychronopoulou, C. Mitterer, and C. Rebholz, “Synthesis of nanoporous graphene oxide adsorbents by freeze-drying or microwave radiation: Characterization and hydrogen storage properties,” Int. J. Hydrogen Energy, pp. 6844–6852, 2015. [15] N. Kostoglou, A. Tarat, I. Walters, V. Ryzhkov, C. Tampaxis, G. Charalambopoulou, T. Steriotis, C. Mitterer, and C. Rebholz, “Few-layer graphene-like flakes derived by plasma treatment: a potential material for hydrogen adsorption and storage,” Microporous Mesoporous Mater., pp. 482–487, 2016. [16] V. Jain and B. Kandasubramanian, “Functionalized graphene materials for hydrogen storage,” J. Mater. Sci., pp. 1865–1903, 2020. [17] D. P. Broom, C. J. Webb, K. E. Hurst, P. A. Parilla, T. Gennett, C. M. Brown, R. Zacharia, E. Tylianakis, E. Klontzas, G. E. Froudakis, T. A. Steriotis, P. N. Trikalitis, D. L. Anton, B. Hardy, D. Tamburello, C. Corgnale, B. A. van Hassel, D. Cossement, R. Chahine, and M. Hirscher, “Outlook and challenges for hydrogen storage in nanoporous materials,” Appl. Phys. A, vol. 122, 2016. [18] R. Chamoun, U. B. Demirci, and P. Miele, “Cyclic dehydrogenation– (re)hydrogenation with hydrogen-storage materials: An overview,” Energy Technol., pp. 100–117, 2015. [19] H. T. Hwang and A. Varma, “Hydrogen storage for fuel cell vehicles,” Curr. Opin. Chem. Eng., pp. 42–48, 2014. [20] C.-Y. Wang, C.-W. Chang, Y.-J. Wu, and A. D. Lueking, “Observation and simulation of hydrogen storage via spillover,” Curr. Opin. Chem. Eng., pp. 116–121, 2018. [21] D. S. Pyle, E. M. A. Gray, and C. J. Webb, “Hydrogen storage in carbon nanostructures via spillover,” Int. J. Hydrogen Energy, pp. 19098–19113, 2016. [22] J. H. Guo, S. J. Li, Y. Su, and G. Chen, “Theoretical study of hydrogen storage by spillover on porous carbon materials,” Int. J. Hydrogen Energy, vol. 45, pp. 25900–25911, 2020. [23] G. M. Psofogiannakis and G. E. Froudakis, “Fundamental studies and perceptions on the spillover mechanism for hydrogen storage,” Chem. Commun., pp. 7933–7943, 2011. [24] L. Wang and R. T. Yang, “Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spillover,” Catal. Rev., pp. 411–461, 2010. [25] X. Yu, Z. Tang, D. Sun, L. Ouyang, and M. Zhu, “Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications,” Prog. Mater. Sci., 1-48 2017. [26] T. Y. Chen, Y. Zhang, L. C. Hsu, A. Hu, Y. Zhuang, C. M. Fan, C. Y. Wang, T. Y. Chung, C. S. Tsao, and H. Y. Chuang, “Crystal shape controlled H2 storage rate in nanoporous carbon composite with ultra-fine Pt nanoparticle,” Sci. Rep., vol. 7, pp. 1–9, 2017. [27] D. Giasafaki, G. Charalambopoulou, C. Tampaxis, A. Stubos, and T. Steriotis, “Hydrogen sorption properties of Pd-doped carbon molecular sieves,” Int. J. Hydrogen Energy, pp. 9830–9836, 2014. [28] D. Giasafaki, G. Charalambopoulou, C. Tampaxis, K. Dimos, D. Gournis, A. Stubos, and T. Steriotis, “Comparing hydrogen sorption in different Pd-doped pristine and surface-modified nanoporous carbons,” Carbon N. Y., pp. 1–14, 2016. [29] P. J. Tsai, C. H. Yang, W. C. Hsu, W. T. Tsai, and J. K. Chang, “Enhancing hydrogen storage on carbon nanotubes via hybrid chemical etching and Pt decoration employing supercritical carbon dioxide fluid,” Int. J. Hydrogen Energy, pp. 6714–6720, 2012. [30] C. H. Chen, T. Y. Chung, C. C. Shen, M. S. Yu, C. S. Tsao, G. N. Shi, C. C. Huang, M. D. Ger, and W. L. Lee, “Hydrogen storage performance in palladium-doped graphene/carbon composites,” Int. J. Hydrogen Energy, pp. 3681–3688, 2013. [31] H. Zhou, J. Zhang, J. Zhang, X. Yan, X. Shen, and A. Yuan, “High-capacity roomtemperature hydrogen storage of zeolitic imidazolate framework/graphene oxide promoted by platinum metal catalyst,” Int. J. Hydrogen Energy, pp. 12275–12285, 2015. [32] H. Zhou, X. Liu, J. Zhang, X. Yan, Y. Liu, and A. Yuan, “Enhanced roomtemperature hydrogen storage capacity in Pt-loaded graphene oxide/hkust-1 composites,” Int. J. Hydrogen Energy, pp. 2160–2167, 2014. [33] Y. Li and R. T. Yang, “Hydrogen storage on platinum nanoparticles doped on superactivated carbon,” J. Phys. Chem. C, pp. 11086–11094, 2007. [34] N. P. Stadie, J. J. Purewal, C. C. Ahn, and B. Fultz, “Measurements of hydrogen spillover in platinum doped superactivated carbon,” Langmuir, pp. 15481–15485, 2010. [35] R. Bhowmick, S. Rajasekaran, D. Friebel, C. Beasley, L. Jiao, H. Ogasawara, H. Dai, B. Clemens, and A. Nilsson, “Hydrogen spillover in Pt-single-walled carbon nanotube composites: Formation of stable c-h bonds,” J. Am. Chem. Soc., pp. 5580–5586, 2011. [36] J. L. Blackburn, C. Engtrakul, J. B. Bult, K. Hurst, Y. Zhao, Q. Xu, P. A. Parilla, L. J. Simpson, J. D. R. Rocha, M. R. Hudson, C. M. Brown, and T. Gennett, “Spectroscopic identification of hydrogen spillover species in ruthenium-modified high surface area carbons by diffuse reflectance infrared fourier transform spectroscopy,” J. Phys. Chem. C, pp. 26744–26755, 2012. [37] X. M. Liu, Y. Tang, E. S. Xu, T. C. Fitzgibbons, G. S. Larsen, H. R. Gutierrez, H. H. Tseng, M. S. Yu, C. S. Tsao, J. V. Badding, V. H. Crespi, and A. D. Lueking, “Evidence for ambient-temperature reversible catalytic hydrogenation in Pt-doped carbons,” Nano Lett., pp. 137–141, 2013. [38] C.-S. Tsao, Y. Liu, M. Li, Y. Zhang, J. B. Leao, H. W. Chang, M. S. Yu, and S. H. Chen, “Neutron scattering methodology for absolute measurement of roomtemperature hydrogen storage capacity and evidence for spillover effect in a Ptdoped activated carbon,” J. Phys. Chem. Lett., pp. 1569–1573, 2010. [39] C. S. Tsao, Y. Liu, H. Y. Chuang, H. H. Tseng, T. Y. Chen, C. H. Chen, M. S. Yu, Q. Li, A. Lueking, and S. H. Chen, “Hydrogen spillover effect of Pt-doped activated carbon studied by inelastic neutron scattering,” J. Phys. Chem. Lett., pp. 2322–2325, 2011. [40] Y. Liu, C. M. Brown, D. A. Neumann, D. B. Geohegan, A. A. Puretzky, C. M. Rouleau, H. Hu, D. S. Barnett, P. O. Krasnov, and B. I. Yakobson, “Metal-assisted hydrogen storage on Pt-decorated single-walled carbon nanohorns,” Carbon N. Y., pp. 4953–4964, 2012. [41] Z. Geng, D. Wang, C. Zhang, X. Zhou, H. Xin, X. Liu, and M. Cai, “Spillover enhanced hydrogen uptake of Pt/Pd doped corncob-derived activated carbon with ultra-high surface area at high pressure,” Int. J. Hydrogen Energy, pp. 13643–13649, 2014. [42] R. Zacharia, S. Rather, S. W. Hwang, and K. S. Nahm, “Spillover of physisorbed hydrogen from sputter-deposited arrays of platinum nanoparticles to multi-walled carbon nanotubes,” Chem. Phys. Lett., pp. 286–291, 2007. [43] C. S. Tsao, Y. R. Tzeng, M. S. Yu, C. Y. Wang, H. H. Tseng, T. Y. Chung, H. C. Wu, T. Yamamoto, K. Kaneko, and S. H. Chen, “Effect of catalyst size on hydrogen storage capacity of Pt-impregnated active carbon via spillover,” J. Phys. Chem. Lett., pp. 1060–1063, 2010. [44] A. A. Nair, R. Sundara, and N. Anitha, “Hydrogen storage performance of palladium nanoparticles decorated graphitic carbon nitride,” Int. J. Hydrogen Energy, pp. 3259–3267, 2015. [45] N. R. Stuckert, L. Wang, and R. T. Yang, “Characteristics of hydrogen storage by spillover on Pt-doped carbon and catalyst-bridged metal organic framework,” Langmuir, pp. 11963–11971, 2010. [46] Y. Jeong and T. M. Chung, “Mono-dispersed transition metal nanoparticles on boron-substituted carbon support and applications in hydrogen storage,” Carbon N. Y., pp. 140–146, 2011. [47] P. Kundu, C. Nethravathi, P. A. Deshpande, M. Rajamathi, G. Madras, and N. Ravishankar, “Ultrafast microwave-assisted route to surfactant-free ultrafine Pt nanoparticles on graphene: Synergistic co-reduction mechanism and high catalytic activity,” Chem. Mater., pp. 2772–2780, 2011. [48] P. Jain, D. A. Fonseca, E. Schaible, and A. D. Lueking, “Hydrogen uptake of platinum-doped graphite nanofibers and stochastic analysis of hydrogen spillover,” J. Phys. Chem. C, pp. 1788–1800, 2007. [49] L. Wang and R. T. Yang, “New sorbents for hydrogen storage by hydrogen spillover–a review,” Energy Environ. Sci., vol. 1, pp. 268–279, 2008. [50] H. Chen, L. Wang, J. Yang, and R. T. Yang, “Investigation on hydrogenation of metal organic frameworks hkust-1, mil-53 and zif-8 by hydrogen spillover,” J. Phys. Chem. C, pp. 7565–7576, 2013. [51] C. H. Chen and C. C. Huang, “Effect of surface characteristics and catalyst loaded amount on hydrogen storage in carbon nanotubes,” Microporous Mesoporous Mater., pp. 553–560, 2008. [52] Y. Suttisawat, P. Rangsunvigit, B. Kitiyanan, M. Williams, P. Ndungu, M. Lototskyy, A. Nechaev, V. Linkov, and S. Kulprathipanja, “Investigation of hydrogen storage capacity of multi-walled carbon nanotubes deposited with Pd or V,” Int. J. Hydrogen Energy, pp. 6669–6675, 2009. [53] H. Nishihara, T. Simura, and T. Kyotani, “Enhanced hydrogen spillover to fullerene at ambient temperature,” Chem. Commun., pp. 3327–3330, 2018. [54] W. Karim, C. Spreafico, A. Kleibert, J. Gobrecht, J. VandeVondele, Y. Ekinci, and J. A. van Bokhoven, “Catalyst support effects on hydrogen spillover,” Nature, pp. 68–71, 2017. [55] S. Nachimuthu, P. J. Lai, and J. C. Jiang, “Efficient hydrogen storage in boron doped graphene decorated by transition metals –a first-principles study,” Carbon N. Y., pp. 132–140, 2014. [56] L. Wang, F. H. Yang, R. T. Yang, and M. A. Miller, “Effect of surface oxygen groups in carbons on hydrogen storage by spillover,” Ind. Eng. Chem. Res., pp. 2920–2926, 2009. [57] E. Dı́az, M. León, and S. Ordóneez, “Hydrogen adsorption on Pd-modified carbon nanofibres:influence of cnf surface chemistry and impregnation procedure,” Int. J. Hydrogen Energy, pp. 4576–4581, 2010. [58] Q. Li and A. D. Lueking, “Effect of surface oxygen groups and water on hydrogen spillover in Pt-doped activated carbon,” J. Phys. Chem. C, pp. 4273–4282, 2011. [59] T. Y. Chung, C. S. Tsao, H.-P. Tseng, C. H. Chen, and M. S. Yu, “Effects of oxygen functional groups on the enhancement of the hydrogen spillover of Pd-doped activated carbon,” J. Colloid Interface Sci., pp. 98–105, 2015. [60] N. Kostoglou, C. W. Liao, C. Y. Wang, J. N. Kondo, C. Tampaxis, T. Steriotis, K. Giannakopoulos, A. G. Kontos, S. Hinder, M. Baker, E. Bousser, A. Matthews, C. Rebholz, and C. Mitterer, “Effect of Pt nanoparticle decoration on the H2 storage performance of plasma-derived nanoporous graphene,” Carbon, pp. 294–305, 2021. [61] A. Ursua, L. M. Gandia, and P. Sanchis, “Hydrogen production from water electrolysis: Current status and future trends,” Proceedings of the IEEE, pp. 410–426, 2012. [62] R. Subbaraman, D. Tripkovic, K. C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, and N. M. Markovic, “Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts,” Nat. Mater., pp. 550–557, 2012. [63] C. G. M. Guio, L. A. Stern, and X. Hu, “Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution,” Chem. Soc. Rev., pp. 6555–6569, 2014. [64] J. Kibsgaard, T. F. Jaramillo, and F. Besenbacher, “Building an appropriate activesite motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2- clusters,” Nat. Chem., pp. 248–253, 2014. [65] D. Kong, H. Wang, Z. Lu, and Y. Cui, “CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction,” J. Am. Chem. Soc., pp. 4897–4900, 2014. [66] Z. Zhang, B. Lu, J. Hao, W. Yanga, and J. Tang, “FeP nanoparticles grown on graphene sheets as highly active non-precious-metal electrocatalysts for hydrogen evolution reaction,” Chem. Commun., pp. 11554–11557, 2014. [67] F. Jiao and H. Frei, “Nanostructured cobalt and manganese oxideclusters as efficient wateroxidationcatalysts,” Energ. Environ. Sci., pp. 1018–1027, 2010. [68] D. Merki and X. Hu, “Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts,” Chem. Commun, pp. 3878–3888, 2011. [69] W. Cui, Q. Liu, N. Cheng, A. M. Asiricd, and X. Sun, “Activated carbon nanotubes: a highly-active metal-free electrocatalyst for hydrogen evolution reaction,” Chem. Commun., pp. 9340–9342, 2014. [70] R. K. Das, Y. Wang, S. V. Vasilyeva, E. Donoghue, I. Pucher, G. Kamenov, H. P. Cheng, and A. G. Rinzler, “Extraordinary hydrogen evolution and oxidation reaction activity from carbon nanotubes and graphitic carbons,” Acs Nano, pp. 8447–8456, 2014. [71] W. Zhou, Y. Zhou, L. Yang, J. Huang, Y. Ke, K. Zhou, L. Lia, and S. Chen, “Ndoped carbon-coated cobalt nanorod arrays supported on a titanium mesh as highly active electrocatalysts for the hydrogen evolution reaction,” J. Mater. Chem. A, pp. 1915–1919, 2015. [72] Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, “MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction,” J. Am. Chem. Soc., pp. 7296–7299, 2011. [73] W. Sheng, Z. Zhuang, M. Gao, J. Zheng, J. G. Chen, and Y. Yan, “Correlating hydrogen oxidation and evolution activity on platinum at different ph with measured hydrogen binding energy,” Nat. Commun., vol. 6, pp. 1–6, 2015. [74] Z. M. Ao, Q. Jiang, R. Q. Zhang, T. T. Tan, and S. Li, “Al doped graphene: A promising material for hydrogen storage at room temperature,” J. Appl. Phys., vol. 105, 2009. [75] H. Lee, J. Ihm, M. L. Cohen, and S. G. Louie, “Calcium-decorated graphene-based nanostructures for hydrogen storage,” Nano Lett., pp. 793–798, 2010. [76] O. Faye, U. Eduok, J. Szpunar, B. Szpunar, A. Samoura, and A. Beye, “Hydrogen storage on bare Cu atom and Cu-functionalized boron-doped graphene: A first principles study,” Int. J. Hydrogen Energy, vol. 42, pp. 4233–4243, 2016. [77] D. Kim, S. Lee, Y. Hwang, K. H. Yun, and Y. C. Chung, “Hydrogen storage in Li dispersed graphene with stonee-wales defects: A first-principles study,” Int. J. Hydrogen Energy, pp. 13189–13194, 2014. [78] F. D. Wang, F. Wang, N. N. Zhang, Y. H. Li, S. Tang, H. Sun, Y. F. Chang, and R. S. Wang, “High-capacity hydrogen storage of Na-decorated graphene with boron substitution: First-principles calculations,” Chem. Phys. Lett., pp. 212–216, 2013. [79] Y. Wang, J. Liu, K. Wang, T. Chen, X. Tan, and C. M. Li, “Hydrogen storage in Ni-B nanoalloy-doped 2D graphene,” Int. J. Hydrogen Energy, pp. 12950–12954, 2011. [80] V. B. Parambhath, R. Nagar, and S. Ramaprabhu, “Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene,” Langmuir, pp. 7826−7833, 2012. [81] A. Lebon, J. Carrete, L. Gallego, and A. Vega, “Ti-decorated zigzag graphene nanoribbons for hydrogen storage. a van der waals-corrected density-functional study,” Int. J. Hydrogen Energy, pp. 1–9, 2015. [82] K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun., pp. 351–355, 2008. [83] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and ntrinsic strength of monolayer raphene,” Science, pp. 385–388, 2008. [84] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. uoff, “Graphene based ultracapacitors,” Nano Lett., pp. 3498–3502, 2008. [85] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior hermal conductivity of single-layer raphene,” Nano Lett., pp. 902–907, 2008. [86] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., pp. 183–191, 2007. [87] V. C. T. M. J. Allen and R. B. Kaner, “Honeycomb carbon: a review of graphene,” Chem. Rev., pp. 132–145, 2010. [88] J. T. Clarke, “Surface area measurement of graphite using the gamma-radiation of KR85,” J. Phys. Chem., vol. 68, 1964. [89] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, pp. 666–669, 2004. [90] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, pp. 1558–1565, 2007. [91] G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol., pp. 270–274, 2008. [92] K. H. Kim, M. Yang, K. M. Cho, Y. S. Jun, S. Lee, and H. T. Jung, “High quality reduced graphene oxide through repairing with multi-layered graphene ball nanostructures.,” Scientific Reports, vol. 3, pp. 1–8, 2013. [93] A. Dato, V. Radmilovic, Z. Lee, J. Phillips, and M. Frenklach, “Substrate-free gasphase synthesis of graphene sheets,” Scientific Reports, pp. 2012–2016, 2008. [94] J. O. M. Bockris, I. A. Ammar, and A. K. M. S. Huq, “The mechanism of the hydrogen evolution reaction on platinum, silver and tungsten surfaces in acid solutions,” J. Phys. Chem., pp. 879–886, 1957. [95] M. Chhetri, M. Rana, B. Loukya, P. K. Patil, R. Datta, and U. K. Gautam, “Mechanochemical synthesis of free-standing platinum nanosheets and their electrocatalytic properties,” Adv. Mater, pp. 4430–4437, 2015. [96] G. R. Xu, J. J. Hui, T. Huang, Y. Chen, and J. M. Lee, “Platinum nanocuboids supported on reduced graphene oxide as efficient electrocatalyst for the hydrogen evolution reaction,” Power Sources, pp. 393–399, 2015. [97] W. Sheng, Z. Zhuang, M. Gao, J. Zheng, J. G. Chen, and Y. Yan, “Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy,” Nat. Commun., 2015. [98] Z. Li, R. Ge, J. Su, and L. Chen, “Recent progress in low pt content electrocatalysts for hydrogen evolution reaction,” Adv. Mater. Interfaces, vol. 7, July 2020. [99] H. Huang, W. Zhang, Y. Gan, X. Zhang, and J. Tu, “Carbon nanotubes as a secondary support of catalyst layer in oxygen diffusion electrode and their electrochemical properties,” Chinese J. Chem. Phys., pp. 428–432, 2005. [100] K. I. Ota, S. Nishigori, and N. Kamiya, “Dissolution of platinum anodes in sulfuric acid solution,” J. Electroanal. Chem., pp. 405–415, 1988. [101] M. Tian, C. Cousins, D. Beauchemin, Y. Furuya, A. Ohma, and G. Jerkiewicz, “Influence of the working and counter electrode surface area ratios on the dissolution of platinum under electrochemical conditions,” ACS Catal., p. 5108–5116, 2016. [102] Y. S. Horn, W. C. Sheng, S. Chen, P. J. Ferreira, E. F. Holby, and D. Morgan, “Instability of supported platinum nanoparticles in low-temperature fuel cells,” Top. Catal., pp. 285–305, 2007. [103] G. Dong, M. Fang, H. Wang, S. Yip, H. Y. Cheung, F. Wang, C. Y. Wong, S. T. Chu, and J. C. Ho, “Insight into the electrochemical activation of carbon-based cathodes for hydrogen evolution reaction,” J. Mater. Chem. A, pp. 13080–13086, 2015. [104] 胡啟章, 電化學原理與方法. [105] 蘇順發, “儲氫材料,” 2013. https://ejournal.stpi.narl.org.tw/sd/download?source=10203- 02.pdfvlId=72B3C8B9-AA4A-46EC-A5AA-FE4E51C4333Fnd=1ds=1. [106] H. Nishihara, T. Simura, and T. Kyotani, “Enhanced hydrogen spillover to fullerene at ambient temperature,” Chem. Commun., pp. 3327–3330, 2018. [107] Y. W. Chi, C. C. Hua, K. P. Huang, H. H. Shen, and R. Muniyandi, “Manipulation of defect density and nitrogen doping on few-layer graphene sheets using the plasma methodology for electrochemical applications,” Electrochim. Acta, pp. 144–153, 2016. [108] E. J. Biddinger, D. von Deak, and U. S. Ozkan, “Nitrogen-containing carbon nanostructures as oxygen-reduction catalysts,” Top. Catal., pp. 1566–1574, 2009. [109] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene raman spectroscopy,” Nano Lett., pp. 751–758, 2010. [110] P. Y. Teng, C. C. Lu, K. A. Hasegawa, Y. C. Lin, C. H. Yeh, K. Suenaga, and P. W. Chiu, “Remote catalyzation for direct formation of graphene layers on oxides,” Nano Lett., pp. 1379–1384, 2012. [111] C. L. Do, T. S. Pham, N. P. Nguyen, and V. Q. Tran, “Properties of Pt/C nanoparticle catalysts synthesized by electroless deposition for proton exchange membrane fuel cell,” Adv. Nat. Sci., vol. 4, 2013. [112] P. Y. Huang, C. S. R. Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, “Grains and grain boundaries in single-layer graphene atomic patchwork quilts,” Nature, pp. 389–392, 2011. [113] Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S. S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater., pp. 443–449, 2011. [114] A. W. Tsen, L. Brown, M. P. Levendorf, F. Ghahari, P. Y. Huang, R. W. Havener, C. S. R. Vargas, D. A. Muller, P. Kim, and J. Park, “Tailoring electrical transport across grain boundaries in polycrystalline graphene,” Science, pp. 1143–1146, 2012. [115] G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. V. D. Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, “High-strength chemical-vapor–deposited graphene and grain boundaries,” Science, pp. 1073–1076, 2013. [116] H. I. Rasool, C. Ophus, W. S. Klug, A. Zettl, and J. K. Gimzewski, “Measurement of the intrinsic strength of crystalline and polycrystalline graphene,” Nat. Commun., vol. 4, pp. 1–7, 2013. [117] K. R. Cooper, “In situ PEMFC electrochemical surface area and catalyst utilization measurement,” 2017. https://www.scribner.com/faq/1-in-situ-pem-fcelectrochemical-surface-area-and-catalyst-utilization-measurement/. [118] I. Takahashi and S. S. Kocha, “Examination of the activity and durability of PEMFC catalysts in liquid electrolytes,” J. Power Sources, pp. 6312–6322, 2010. [119] A. Pozio, M. Francesco, A. Cemmi, F. Cardellini, and L. Giorgi, “Comparison of high surface Pt/C catalysts by cyclic voltammetry,” J. Power Sources, pp. 13–19,2002. [120] A. M. Chaparro, A. J. Martín, M. A. Folgado, B. Gallardo, and L. Daza, “Comparative analysis of the electroactive area of Pt/C PEMFC electrodes in liquid and solid polymer contact by underpotential hydrogen adsorption/desorption,” Int. J. Hydrogen energy, pp. 4838–4846, 2009. [121] A. S. Aricò, A. Stassi, E. Modica, R. Ornelas, I. Gatto, E. Passalacqua, and V. Antonucci, “Performance and degradation of high temperature polymer electrolyte fuel cell catalysts,” J. Power Sources, pp. 525–536, 2008. [122] O. V. Cherstiouk, A. N. Simonov, N. S. Moseva, S. V. Cherepanova, P. A. Simonov, V. I. Zaikovskii, and E. R. Savinova, “Microstructure effects on the electrochemical corrosion of carbon materials and carbon-supported Pt catalysts,” Electrochim. Acta, pp. 8453–8460, 2010. [123] J. Perez, E. R. Gonzalez, and E. A. Ticianelli, “Oxygen electrocatalysis on thin porous coating rotating platinum electrodes,” Electrochim. Acta, pp. 1329–1339, 1998. [124] G. Tamizhmani, J. P. Dodelet, and D. Guay, “Crystallite size effects of carbonsupported platinum on oxygen reduction in liquid acids,” J. Electrochem. Soc., vol. 143, January 1996. [125] J. Fournier, G. Faubert, J. Y. Tilquin, R. Coté, D. Guay, and J. P. Dodelet, “High-performance, low Pt content catalysts for the electroreduction of oxygen in polymer-electrolyte fuel cells,” J. Electrochem. Soc., vol. 144, January 1997. [126] F. Gloaguen, F. Andolfatto, R. Durand, and P. Ozil, “Kinetic study of electrochemical reactions at catalyst-recast ionomer interfaces from thin active layer modelling,” J. Appl. Electrochem., pp. 863–869, 1994. [127] M. Ciureanu and H. Wang, “Electrochemical impedance study of electrodemembrane assemblies in PEM fuel cells: I. electro-oxidation of H2 and H2/CO mixtures on Pt-based gas-diffusion electrodes,” J. Electrochem. Soc., vol. 146, pp. 4031–4040, 1999. [128] R. Sugimoto, Y. Segawa, A. Suzuta, Y. Kunisada, T. Uchida, K. Yamazaki, and K. Gohara, “Single pt atoms on n-doped graphene: Atomic structure and local electronic states,” J. Phys. Chem. C, p. 2900–2906, 2021. |