|
[1] Abraham,N.,and Kahn,N.M. A novel focal tversky loss function with improved attention unet for lesion segmentation. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) (2019), IEEE, pp. 683–687. [2] Akbari, M., Mohrekesh, M., NasrEsfahani, E., Soroushmehr, S. R., Karimi, N., Samavi, S., and Najarian, K. Polyp segmentation in colonoscopy images using fully convolu national network. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2018), IEEE, pp. 69–72. [3] Bernal, J., Sánchez, F. J., FernándezEsparrach, G., Gil, D., Rodríguez, C., and Vilariño, F. Wmdova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Computerized Medical Imaging and Graphics 43 (2015), 99–111. [4] Bochkovskiy, A., Wang, C.Y., and Liao, H.Y. M. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020). [5] Brandao, P., Mazomenos, E., Ciuti, G., Caliò, R., Bianchi, F., Menciassi, A., Dario, P., Koulaouzidis, A., Arezzo, A., and Stoyanov, D. Fully convolutional neural networks for polyp segmentation in colonoscopy. In Medical Imaging 2017: ComputerAided Diagno sis (2017), vol. 10134, International Society for Optics and Photonics, p. 101340F. [6] Chao, P., Kao, C.Y., Ruan, Y.S., Huang, C.H., and Lin, Y.L. Hardnet: A low memory traffic network. In Proceedings of the IEEE International Conference on Computer Vision (2019), pp. 3552–3561. [7] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., and Schiele, B. The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE conference on computer vision and pattern recognition (2016), pp. 3213–3223. [8] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., and FeiFei, L. Imagenet: A largescale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (2009), Ieee, pp. 248–255. [9] EatonRosen, Z., Bragman, F., Ourselin, S., and Cardoso, M. J. Improving data augmentation for medical image segmentation. [10] Erichsen, R., Baron, J. A., HamiltonDutoit, S. J., Snover, D. C., Torlakovic, E. E., Pedersen, L., Frøslev, T., Vyberg, M., Hamilton, S. R., and Sørensen, H. T. Increased risk of colorectal cancer development among patients with serrated polyps. Gastroenterology 150, 4 (2016), 895–902. [11] Fan, D.P., Ji, G.P., Zhou, T., Chen, G., Fu, H., Shen, J., and Shao, L. Pranet: Parallel reverse attention network for polyp segmentation. MICCAI (2020). [12] Fang, Y., Zhu, D., Yao, J., Yuan, Y., and Tong, K.y. Abcnet: Areaboundary constraint network with dynamical feature selection for colorectal polyp segmentation. IEEE Sensors Journal (2020). [13] He, K., Zhang, X., Ren, S., and Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE transactions on pattern analysis and machine intel ligence 37, 9 (2015), 1904–1916. [14] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (2016), pp. 770–778. [15] Huang,G.,Liu,Z.,VanDerMaaten,L.,andWeinberger,K.Q.Denselyconnectedconvolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (2017), pp. 4700–4708. [16] J., T. N. G. S. L. Automated polyp detection in colonoscopy videos using shape and context information. IEEE TMI 35(2), 630–644 (2015). [17] Jégou,S.,Drozdzal,M.,Vazquez,D.,Romero,A.,andBengio,Y.Theonehundredlayers tiramisu: Fully convolutional densenets for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops (2017), pp. 11– 19. [18] Jha, D., Ali, S., Johansen, H. D., Johansen, D. D., Rittscher, J., Riegler, M. A., and Halvorsen, P. Realtime polyp detection, localisation and segmentation in colonoscopy using deep learning. arXiv preprint arXiv:2011.07631 (2020). [19] Jha, D., Riegler, M. A., Johansen, D., Halvorsen, P., and Johansen, H. D. Doubleunet: A deep convolutional neural network for medical image segmentation. arXiv preprint arXiv:2006.04868 (2020). [20] Jha, D., Smedsrud, P. H., Riegler, M. A., Halvorsen, P., de Lange, T., Johansen, D., and Johansen, H. D. Kvasirseg: A segmented polyp dataset. In International Conference on Multimedia Modeling (2020), Springer, pp. 451–462. [21] Jha, D., Smedsrud, P. H., Riegler, M. A., Johansen, D., De Lange, T., Halvorsen, P., and Johansen, H. D. Resunet++: An advanced architecture for medical image segmentation. In 2019 IEEE International Symposium on Multimedia (ISM) (2019), IEEE, pp. 225–2255. [22] LiangChieh, C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. In IEEE transactions on pattern analysis and machine intelligence 40, no. 4 (2017), pp. 834–848. [23] LiangChieh, C., Papandreou, G., Schroff, F., and Adam, H. Rethinking atrous convolution for semantic image segmentation. In arXiv preprint arXiv:1706.05587 (2017). [24] LiangChieh, C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. Encoderdecoder with atrous separable convolution for semantic image segmentation. In In Proceedings of the European conference on computer vision (ECCV), pp. 801818. 2018. [25] Lin, G., Milan, A., Shen, C., and Reid, I. Refinenet: Multipath refinement networks for highresolution semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (2017), pp. 1925–1934. [26] Lin, T.Y., Goyal, P., Girshick, R., He, K., and Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision (2017), pp. 2980–2988. [27] Liu,S.,Huang,D.,etal.Receptivefieldblocknetforaccurateandfastobjectdetection.In Proceedings of the European Conference on Computer Vision (ECCV) (2018), pp. 385– 400. [28] Long, J., Shelhamer, E., and Darrell, T. Fully convolutional networks for semantic seg mentation. In Proceedings of the IEEE conference on computer vision and pattern recog nition (2015), pp. 3431–3440. [29] Ronneberger, O., Fischer, P., and Brox, T. Unet: Convolutional networks for biomed ical image segmentation. In International Conference on Medical image computing and computerassisted intervention (2015), Springer, pp. 234–241. [30] Shrestha, S., Khanal, B., and Ali, S. Ensemble unet model for efficient polyp segmenta tion. [31] Shu, L., Lu, Q., Haifang, Q., Jianping, S., and Jiaya, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (2018), pp. 8759–8768. [32] Silva, J., Histace, A., Romain, O., Dray, X., and Granado, B. Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer. International Journal of Computer Assisted Radiology and Surgery 9, 2 (2014), 283–293. [33] TsungYi,L.,Piotr,D.,Ross,G.,Kaiming,H.,Bharath,H.,andSerge,B.Featurepyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (2017), pp. 2117–2125. [34] Vázquez, D., Bernal, J., Sánchez, F. J., FernándezEsparrach, G., López, A. M., Romero, A., Drozdzal, M., and Courville, A. A benchmark for endoluminal scene segmentation of colonoscopy images. Journal of healthcare engineering 2017 (2017). [35] Wang, C.Y., Liao, H.Y. M., Wu, Y.H., Chen, P.Y., Hsieh, J.W., and Yeh, I.H. Csp net: A new backbone that can enhance learning capability of cnn. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (2020), pp. 390–391. [36] Wu, Z., Su, L., and Huang, Q. Cascaded partial decoder for fast and accurate salient object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019), pp. 3907–3916. [37] Yang, M., Yu, K., Zhang, C., Li, Z., and Yang, K. Denseaspp for semantic segmentation in street scenes. In Proceedings of the IEEE conference on computer vision and pattern recognition (2018), pp. 3684–3692. [38] Yang, X., Li, X., Ye, Y., Lau, R. Y., Zhang, X., and Huang, X. Road detection and center line extraction via deep recurrent convolutional neural network unet. IEEE Transactions on Geoscience and Remote Sensing 57, 9 (2019), 7209–7220. [39] Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y. Cutmix: Regularization strat egy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF International Conference on Computer Vision (2019), pp. 6023–6032. [40] Zhang, H., Cisse, M., Dauphin, Y. N., and LopezPaz, D. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017). [41] Zhang,R.,Li,G.,Li,Z.,Cui,S.,Qian,D.,andYu,Y.Adaptivecontextselectionforpolyp segmentation. In International Conference on Medical Image Computing and Computer Assisted Intervention (2020), Springer, pp. 253–262. [42] Zhao,H.,Shi,J.,Qi,X.,Wang,X.,andJia,J.Pyramidsceneparsingnetwork.InProceed ings of the IEEE conference on computer vision and pattern recognition (2017), pp. 2881– 2890. [43] Zhong, J., Wang, W., Wu, H., Wen, Z., and Qin, J. Polypseg: An efficient context aware network for polyp segmentation from colonoscopy videos. In International Confer ence on Medical Image Computing and ComputerAssisted Intervention (2020), Springer, pp. 285–294.
|