|
[1] Y. Balaji, S. Sankaranarayanan, and R. Chellappa. Metareg: Towards domain generalization using meta-regularization. In Advances in Neural Information Processing Systems (NIPS), 2018. [2] F. M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T. Tommasi. Domain generalization by solving jigsaw puzzles. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019. [3] Y. Chen, T. W. Lin, and C. T. Hsu. Towards a universal appearance for domain generalization via adversarial learning. In Asian Conference of Pattern Recognition (ACPR), 2019. [4] M. J. Choi, J. J. Lim, A. Torralba, and A. S. Willsky. Exploiting hierarchical context on a large database of object categories. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 129–136, 2010. [5] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and F. F. Li. Imagenet: A large-scale hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009. [6] Z. Ding and Y. Fu. Deep domain generalization with structured low rank constraint. IEEE Transactions on image processing, 27(1), 2018. [7] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In Proceedings of the IEEE International Conference on Machine Learning (ICML), 2014. [8] V. Dumoulin, J. Shlens, and M. Kudlur. A learned representation for artistic style. In Proceedings of the International Conference on Learning Representation (ICLR), 2017. [9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):303–338, 2010. [10] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the 34th International Conference on Machine Learning (ICML), 2017. [11] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky. Domain-adversarial training of neural networks. Journal of Machine Learning Research, 17(59):1–35, 2016. [12] G. Ghiasi, H. Lee, M. Kudlur, V. Dumoulin, and J. Shlens. Exploring the structure of a real-time, arbitrary neural artistic stylization network. In Proceedings of the British Machine Vision Conference (BMVC), 2017. [13] M. Ghifary, W. B. Kleijn, M. Zhang, and D. Balduzzi. Domain generalization for object recognition with multi-task autoencoders. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015. [14] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset, 2007. [15] P. T. Jackson, A. Atapour-Abarghouei, S. Bonner, T. P. Breckon, and B. Obara. Style augmentation: Data augmentation via style randomization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 83–92, 2019. [16] D. Li, Y. Yang, Y. Z. Song, and T. M. Hospedales. Learning to generalize: metalearning for domain generalization. In AAAI Conference on Artificial Intelligence, 2018. [17] D. Li, Y. Yang, Y. Z. Song, and T.M. Hospedales. Deeper, broader and artier domain generalization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017. [18] D. Li, J. Zhang, Y. Yang, C. Liu, Y. Z. Song, and T.M. Hospedales. Episodic training for domain generalization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2019. [19] H. Li, S. J. Pan, S. Wang, and A. C. Kot. Domain generalization with adversarial feature learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. [20] Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, and D. Tao. Deep domain generalization via conditional invariant adversarial networks. In Proceedings of the European Conference on Computer Vision (ECCV), 2018. [21] M. Mancini, S R. Bulo, B. Caputo, and E. Ricci. Best sources forward: domain generalization through source-specific nets. In IEEE International Conference on Image Processing (ICIP), 2018. [22] T. Matsuura and T. Harada. Domain generalization using a mixture of multiple latent domains. In AAAI Conference on Artificial Intelligence, 2020. [23] K. Muandet, D. Balduzzi, and B. Schölkopf. Domain generalization via invariant feature representation. In Proceedings of the IEEE International Conference on Machine Learning (ICML), 2013. [24] F. Qiao, L. Zhao, and X. Peng. Learning to learn single domain generalization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020. [25] M. M. Rahman, C. Fookes, M. Baktashmotlagh, and S. Sridharan. Multicomponent image translation for deep domain generalization. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2019. [26] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In Proceedings of the International Conference on Learning Representation (ICLR), 2017. [27] M. L. Rizzo and G. J. Székely. Energy distance. Wiley Interdisciplinary Reviews: Computational Statistics, 8(1), 2016. [28] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme: a database and web-based tool for image annotation. International journal of computer vision, 77(1):157–173, 2008. [29] S. Sankaranarayanan, Y. Balaji, C. D. Castillo, and R. Chellappa. Generate to adapt: aligning domains using generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. [30] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative domain adaptation, 2017. arXiv preprint arXiv:1702.05464. [31] H. Wang, Z. He, Z. C. Lipton, and E. P. Xing. Learning robust representations by projecting superficial statistics out. In Proceedings of the International Conference on Learning Representation (ICLR), 2019. [32] X. Wang, L. Li, W. Ye, M. Long, and J. Wang. Transferable attention for domain adaptation. In AAAI Conference on Artificial Intelligence, 2019. [33] K. Y. Wei and C. T. Hsu. Generative adversarial guided learning for domain adaptation. In Proceedings of the British Machine Vision Conference (BMVC), 2018. [34] M. Xu, J. Zhang, B. Ni, T. Li, C. Wang, Q. Tian, and W. Zhang. Adversarial domain adaptation with domain mixup. In AAAI Conference on Artificial Intelligence, 2020. |