帳號:guest(3.21.159.11)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):沈政昕
作者(外文):Shen, Cheng-Hsin
論文名稱(中文):基於可適性信心閾值之顏色恆常性生成對抗網路
論文名稱(外文):Color Constancy GAN with Adaptive Confidence Threshold
指導教授(中文):李端興
指導教授(外文):Lee, Duan-Shin
口試委員(中文):張正尚
李哲榮
口試委員(外文):Chang, Cheng-Shang
Lee, Che-Rung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:107062555
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:33
中文關鍵詞:顏色恆常性生成對抗網路非監督式
外文關鍵詞:color constancygenerative adversarial networkunsupervised learning
相關次數:
  • 推薦推薦:0
  • 點閱點閱:320
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本篇論文中,我們針對顏色恆常性(color constancy)的問題提出一個新的端對端(end-to-end)非監督式(unsupervised)的解決方法。我們以生成對抗網路(generative adversarial network)的架構構築學習模型。和現今主流的模型比較之下,其產生出來的結果是有潛力的。
In this paper, we present a novel end-to-end unsupervised solution for solving color constancy problems. We build our model with a
generative adversarial network and show that it generates promising results compared to the current state-of-art model.
中文摘要i
Abstract ii
Acknowledgements iii
List of Figures vi
List of Tables vii
1 Introduction 1
2 RelatedWork 3
2.1 Color constancy . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Convolutional neural network . . . . . . . . . . . . . . . 4
2.3 Supervised and Unsupervised learning . . . . . . . . . . 5
2.4 Generative model . . . . . . . . . . . . . . . . . . . . . 6
2.4.1 GANs . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.2 Equilibrium of training . . . . . . . . . . . . . . 7
3 Auto White Balance and Unsupervised Learning 9

3.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . 9
3.2 Model Architecture . . . . . . . . . . . . . . . . . . . . 12
3.3 Self-Attention Layer . . . . . . . . . . . . . . . . . . . 16
3.4 Objective Function . . . . . . . . . . . . . . . . . . . . 16
3.5 Adaptive Threshold . . . . . . . . . . . . . . . . . . . . 17
4 Experiments 18
4.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Training stability . . . . . . . . . . . . . . . . . . . . . 28
5 Conclusions 29
Bibliography 30
[1] J. von Kries, “Chromatic adaptation, festschrift der alberchtludwiguniversität,” 1902.
[2] Y. Qian, K. Chen, J. Nikkanen, J.-K. Kämäräinen, and J. Matas,
“Recurrent color constancy,” ICCV, 2017.
[3] O. Sidorov, “Conditional gans for multi-illuminant color constancy: Revolution or yet another approach?” CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019.
[4] S. Bianco and C. Cusano, “Quasi-unsupervised color constancy,”
CVPR, 2019.
[5] J. Qiu, H. Xu, and Z. Ye, “Color constancy by reweighting image feature maps,” IEEE Transactions on Image Processing, 2020.
[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” NIPS, 2014.
[7] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint arXiv:1701.07875, 2017.
[8] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved training of wasserstein gans,” NIPS, 2017.
[9] J. Zhao, M. Mathieu, and Y. LeCun, “Energy-based generative adversarial network,” ICLR, 2017.
[10] D. Berthelot, T. Schumm, and L. Metz, “Began: Boundary equilibrium generative adversarial networks,” arXiv:1703.10717, 2017.
[11] C.-C. Chang, C. H. Lin, C.-R. Lee, D.-C. Juan, W. Wei, and H.-T. Chen, “Escaping from collapsing modes in a constrained space,”
ECCV, 2018.
[12] P. Das, A. S. Baslamisli, Y. Liu, S. Karaoglu, and T. Gevers, “Color constancy by gans: An experimental survey,” arXiv:1812.03085,
2018.
[13] Y. Hu, B. Wang, and S. Lin, “Fc 4: Fully convolutional color constancy with confidence-weighted pooling,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4085–4094.
[14] I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf, “Wasserstein auto-encoders,” arXiv:1711.01558, 2017.
[15] Z. Zhang, R. Zhang, Z. Li, Y. Bengio, and L. Paull, “Perceptual generative autoencoders,” ICML, 2020.
[16] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial autoencoders,” ICLR, 2016.
[17] Y. Pu, Z. Gan, R. Henao, X. Yuan, A. Stevens, and L. Carin, “Variational autoencoder for deep learning of images, labels and captions,” NIPS, 2016.
[18] Y. Bengio, L. Yao, G. Alain, and P. Vincent, “Generalized denoising auto-encoders as generative models,” NIPS, 2013.
[19] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing robust features with denoising autoencoders,”
ICML, 2008.
[20] D. Ji, J. Kwon, M. McFarland, and S. Savarese, “Deep view morphing,” IEEE Conference on Computer Vision and Pattern Recognition, 2017.
[21] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, Selfattention generative adversarial networks,” arXiv:1805.08318v2, 2019.
[22] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for generative adversarial networks,” ICLR, 2018.
[23] P. V. Gehler, C. Rother, A. Blake, T. Minka, and T. Sharp, “Bayesian color constancy revisited,” CVPR, 2008.
[24] L. Shi and B. Funt., “Re-processed version of the gehler
color constancy dataset of 568 images.” [Online]. Available:
http://www.cs.sfu.ca/ colour/data/
[25] G. Hemrit, G. D. Finlayson, A. Gijsenij, P. Gehler, S. Bianco, B. Funt, M. Drew, and L. Shi, “Rehabilitating the colorchecker
dataset for illuminant estimation,” arXiv:1805.12262, 2018.
[26] N. Bani´c, K. Košˇcevi´c, and S. Lonˇcari´c, “Unsupervised learning for color constancy,” arXiv:1712.00436, 2017.
[27] M. Heusel, H. Ramsauer, T. Unterthiner, and B. Nessler, “Gans
trained by a two time-scale update rule converge to a local nash
equilibrium,” NIPS, 2017.
[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv:1412.6980, 2014.
[29] G. Buchsbaum, “A spatial processor model for object colour perception,” Journal of the Franklin Institute, 1980.
[30] D. H. Brainard and B. A. Wandell, “Analysis of the retinex theory of color vision,” JOSA A, 1986.
[31] G. D. Finlayson and E. Trezzi, “Shades of gray and colour constancy,” Color Imaging Conference, 2004.
[32] T. G. J. van de Weijer and A. Gijsenij, “Edge-based color constancy,” TIP, 2007.


(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *