|
[1] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.
[2] M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio, “Transfusion: Understanding transfer learning for medical imaging,” in Advances in Neural Information Processing Systems, pp. 3342–3352, 2019.
[3] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of adversarial machine learning,” Pattern Recognition, vol. 84, pp. 317–331, 2018.
[4] C. Szegedy,W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, “Intriguing properties of neural networks,” International Conference on Learning Representations, 2014.
[5] G. F. Elsayed, I. Goodfellow, and J. Sohl-Dickstein, “Adversarial reprogramming of neural networks,” in International Conference on Learning Representations, 2019.
[6] S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for nonconvex stochastic programming,” SIAM Journal on Optimization, vol. 23, no. 4, pp. 2341– 2368, 2013.
[7] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. ˇ Srndi´c, P. Laskov, G. Giacinto, and F. Roli, “Evasion attacks against machine learning at test time,” in Joint European conference on machine learning and knowledge discovery in databases, pp. 387–402, 2013.
[8] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” International Conference on Learning Representations, 2015.
[9] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in IEEE Symposium on Security and Privacy, pp. 39–57, 2017.
[10] P.-Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh, “EAD: elastic-net attacks to deep neural networks via adversarial examples,” AAAI, 2018.
[11] L. Mu˜noz-Gonz´alez, B. Biggio, A. Demontis, A. Paudice, V. Wongrassamee, E. C. Lupu, and F. Roli, “Towards poisoning of deep learning algorithms with back-gradient optimization,” in ACM Workshop on Artificial Intelligence and Security, pp. 27–38, 2017.
[12] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor attacks on deep learning systems using data poisoning,” arXiv preprint arXiv:1712.05526, 2017.
[13] A. Shafahi,W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and T. Goldstein, “Poison frogs! targeted clean-label poisoning attacks on neural networks,” in NeurIPS, pp. 6103–6113, 2018.
[14] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “BadNets: Evaluating backdooring attacks on deep neural networks,” IEEE Access, vol. 7, pp. 47230–47244, 2019.
[15] P. Neekhara, S. Hussain, S. Dubnov, and F. Koushanfar, “Adversarial reprogramming of text classification neural networks,” EMNLP, 2019.
[16] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “ZOO: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models,” in ACM Workshop on Artificial Intelligence and Security, pp. 15–26, 2017.
[17] C.-C. Tu, P. Ting, P.-Y. Chen, S. Liu, H. Zhang, J. Yi, C.-J. Hsieh, and S.-M. Cheng, “Autozoom: Autoencoder-based zeroth order optimization method for attacking blackbox neural networks,” AAAI, 2019.
[18] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial attacks: Reliable attacks against black-box machine learning models,” International Conference on Learning Representations, 2018.
[19] M. Cheng, T. Le, P.-Y. Chen, J. Yi, H. Zhang, and C.-J. Hsieh, “Query-e_cient hardlabel black-box attack: An optimization-based approach,” International Conference on Learning Representations, 2019.
[20] S. Liu, B. Kailkhura, P.-Y. Chen, P. Ting, S. Chang, and L. Amini, “Zeroth-order stochastic variance reduction for nonconvex optimization,” in NeurIPS, pp. 3731–3741, 2018.
[21] S. Liu, P.-Y. Chen, X. Chen, and M. Hong, “signsgd via zeroth-order oracle,” International Conference on Learning Representations, 2019.
[22] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Doll´ar, “Focal loss for dense object detection,” in Proceedings of the IEEE international conference on computer vision, pp. 2980–2988, 2017. 33
[23] X. Gao, B. Jiang, and S. Zhang, “On the information-adaptive variants of the admm: an iteration complexity perspective,” Optimization Online, vol. 12, 2014.
[24] N.Silberman and S.Guadarrama, “Tensorflow-slim image classification model library,” 2016.
[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.
[26] C. Szegedy, V. Vanhoucke, S. Io_e, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826, 2016.
[27] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and K. Keutzer, “Densenet: Implementing e_cient convnet descriptor pyramids,” arXiv preprint arXiv:1404.1869, 2014.
[28] C. Craddock, Y. Benhajali, C. Chu, F. Chouinard, A. Evans, A. Jakab, B. S. Khundrakpam, J. D. Lewis, Q. Li, M. Milham, C. Yan, and P. Bellec, “The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives,” Frontiers in Neuroinformatics, no. 41, 2013.
[29] A. S´olon, A. Franco, C. Craddock, A. Buchweitz, and F. Meneguzzi, “Identification of autism spectrum disorder using deep learning and the abide dataset,” NeuroImage: Clinical, vol. 17, 08 2017.
[30] J. Nielsen, B. A Zielinski, P. Thomas Fletcher, A. L Alexander, N. Lange, E. D Bigler, J. Lainhart, and J. Anderson, “Multisite functional connectivity mri classification of autism: Abide results,” Frontiers in human neuroscience, vol. 7, p. 599, 09 2013.
[31] A. S. Heinsfeld, A. R. Franco, R. C. Craddock, A. Buchweitz, and F. Meneguzzi, “Identification of autism spectrum disorder using deep learning and the abide dataset,” in NeuroImage: Clinical, 2018.
[32] T. Eslami, V. Mirjalili, A. Fong, A. R. Laird, and F. Saeed, “Asd-diagnet: A hybrid learning approach for detection of autism spectrum disorder using fmri data,” Frontiers in Neuroinformatics, vol. 13, Nov 2019.
[33] N. Codella, V. Rotemberg, P. Tschandl, M. E. Celebi, S. Dusza, D. Gutman, B. Helba, A. Kalloo, K. Liopyris, M. Marchetti, et al., “Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic),” arXiv preprint arXiv:1902.03368, 2019.
[34] P. Tschandl, C. Rosendahl, and H. Kittler, “The ham10000 dataset: A large collection of multi-source dermatoscopic images of common pigmented skin lesions,” Scientific Data, vol. 5, 03 2018.
[35] K. M. Li and E. C. Li, “Skin lesion analysis towards melanoma detection via end-toend deep learning of convolutional neural networks,” arXiv preprint arXiv:1807.08332, 2018.
|