|
[1] A. Bordes, Y.-L. Boureau, and W. Jason. Learning end-to-end goal-oriented dialog. In ICLR, 2017. [2] J. Chung, C¸ aglar G¨ulc¸ehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. ArXiv, abs/1412.3555, 2014. [3] R. Das, M. Zaheer, S. Reddy, and A. McCallum. Question answering on knowledge bases and text using universal schema and memory networks. In ACL, 2017. [4] A. Deoras and R. Sarikaya. Deep belief network based semantic taggers for spoken language understanding. In INTERSPEECH, 2013. [5] B. Dhingra, L. Li, X. Li, J. Gao, Y.-N. Chen, F. Ahmed, and L. Deng. Towards end-to-end reinforcement learning of dialogue agents for information access. In ACL, 2017. [6] E. Dinan, S. Roller, K. Shuster, A. Fan, M. Auli, and J. Weston. Wizard of wikipedia: Knowledge-powered conversational agents. In ICLR, 2019. [7] J. Dodge, A. Gane, X. Zhang, A. Bordes, S. Chopra, A. H. Miller, A. Szlam, and J. Weston. Evaluating prerequisite qualities for learning end-to-end dialog systems. CoRR, abs/1511.06931, 2016. [8] M. Eric and C. D. Manning. Key-value retrieval networks for task-oriented dialogue. In SIGDIAL, 2017. [9] M. Ghazvininejad, C. Brockett, M.-W. Chang, B. Dolan, J. Gao, W.-t. Yih, and M. Galley. A knowledge-grounded neural conversation model. In AAAI, 2018. [10] W. Hwang, J. Yim, S. Park, and M. Seo. A comprehensive exploration on wikisql with table-aware word contextualization. arXiv preprint arXiv:1902.01069, 2019. [11] K. Kim, C. Lee, S. Jung, and G. G. Lee. A frame-based probabilistic framework for spoken dialog management using dialog examples. In SIGDIAL Workshop, 2008. [12] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2015. [13] W. Lei, X. Jin, Z. Ren, X. He, M.-Y. Kan, and D. Yin. Sequicity: Simplifying task-oriented dialogue systems with single sequence-to-sequence architectures. In ACL, 2018. [14] X. Li, Y.-N. Chen, L. Li, J. Gao, and A. C¸ elikyilmaz. End-to-end task-completion neural dialogue systems. ArXiv, abs/1703.01008, 2017. [15] B. Liu and I. Lane. An end-to-end trainable neural network model with belief tracking for task-oriented dialog. ArXiv, abs/1708.05956, 2017. [16] A. Madotto, C.-S. Wu, and P. Fung. Mem2seq: Effectively incorporating knowledge bases into end-to-end task-oriented dialog systems. ArXiv, abs/1804.08217, 2018. [17] C. D. Manning and M. Eric. A copy-augmented sequence-to-sequence architecture gives good performance on task-oriented dialogue. In EACL, 2017. [18] B. McCann, N. S. Keskar, C. Xiong, and R. Socher. The natural language decathlon: Multitask learning as question answering. arXiv preprint arXiv:1806.08730, 2018. [19] Y. Mo, W. Yin, K. S. Hasan, C. d. Santos, B. Xiang, and B. Zhou. Improved neural relation detection for knowledge base question answering. In ACL, 2017. [20] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. Devito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in pytorch. In NIPS-W, 2017. [21] L. Qin, M. Galley, C. Brockett, X. Liu, X. Gao, B. Dolan, Y. Choi, and J. Gao. Conversing by reading: Contentful neural conversation with on-demand machine reading. In ACL, 2019. [22] A. I. Rudnicky, E. H. Thayer, P. C. Constantinides, C. Tchou, R. Shern, K. A. Lenzo, W. Xu, and A. H. Oh. Creating natural dialogs in the carnegie mellon communicator system. In EUROSPEECH, 1999. [23] I. Serban, A. Sordoni, Y. Bengio, A. C. Courville, and J. Pineau. Building end-to-end dialogue systems using generative hierarchical neural network models. In AAAI, 2016. [24] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus. End-to-end memory networks. In NIPS, 2015. [25] H. Sun, B. Dhingra, M. Zaheer, K. Mazaitis, R. Salakhutdinov, and W. Cohen. Open domain question answering using early fusion of knowledge bases and text. In EMNLP, 2018. [26] W.Wei, Q. V. Le, A. M. Dai, and J. Li. Airdialogue: An environment for goal-oriented dialogue research. In EMNLP, 2018. [27] T.-H. Wen, D. V. L. M. Rojas-Barahona, M. Gasic, N. Mrksic, P. hao Su, S. Ultes, and S. J. Young. A network-based end-to-end trainable task-oriented dialogue system. In EACL, 2016. [28] J. Weston, S. Chorpa, and A. Bordes. Memory networks. arXiv:1410.3916, 2014. [29] C.-S. Wu, R. Socher, and C. Xiong. Global-to-local memory pointer networks for task-oriented dialogue. ArXiv, abs/1901.04713, 2019. [30] X. Xu, C. Liu, and D. Song. Sqlnet: Generating structured queries from natural language without reinforcement learning. In ICLR, 2018. [31] X. Yang, Y.-N. Chen, D. Z. Hakkani-T¨ur, P. Crook, X. Li, J. Gao, and L. Deng. End-to-end joint learning of natural language understanding and dialogue manager. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5690–5694, 2017. [32] S. J. Young, M. Gasic, B. Thomson, and J. D. Williams. Pomdp-based statistical spoken dialog systems: A review. Proceedings of the IEEE, 101:1160–1179, 2013. [33] T. Yu, Z. Li, Z. Zhang, R. Zhang, and D. Radev. Typesql: Knowledge-based typeaware neural text-to-sql generation. In NAACL, 2018. [34] T. Yu, R. Zhang, H. Y. Er, S. Li, E. Xue, B. Pang, X. V. Lin, Y. C. Tan, T. Shi, Z. Li, Y. Jiang, M. Yasunaga, S. Shim, T. Chen, A. R. Fabbri, Z. Li, L. Chen, Y. Zhang, S. Dixit, V. Zhang, C. Xiong, R. Socher, W. S. Lasecki, and D. R. Radev. Cosql: A conversational text-to-sql challenge towards cross-domain natural language interfaces to databases. In EMNLP/IJCNLP, 2019. [35] T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, I. Li, Q. Yao, S. Roman, Z. Zhang, and D. R. Radev. Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. In EMNLP, 2018. [36] T. Yu, R. Zhang, M. Yasunaga, Y. C. Tan, X. V. Lin, S. Li, H. Er, I. Li, B. Pang, T. Chen, E. Ji, S. Dixit, D. N. Proctor, S. Shim, J. Kraft, V. Zhang, C. Xiong, R. Socher, and D. R. Radev. Sparc: Cross-domain semantic parsing in context. In ACL, 2019. [37] T. Zhao and M. Esk´enazi. Towards end-to-end learning for dialog state tracking and management using deep reinforcement learning. In SIGDIAL Conference, 2016. [38] V. Zhong, C. Xiong, and R. Socher. Seq2sql: Generating structured queries from natural language using reinforcement learning. ArXiv, abs/1709.00103, 2017. [39] V. Zue. Conversational interfaces: advances and challenges. Proceedings of the IEEE, 88:1166–1180, 2000. [40] V. Zue, S. Seneff, J. R. Glass, J. Polifroni, C. Pao, T. J. Hazen, and I. L. Hetherington. Juplter: a telephone-based conversational interface for weather information. IEEE Trans. Speech Audio Process., 8:85–96, 2000. |