|
[1] Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (pp. 1097–1105). [2] Teerapittayanon, S., McDanel, B., & Kung, H. (2016). BranchyNet: Fast inference via early exiting from deep neural networks. In 2016 23rd International Conference on Pattern Recognition (ICPR). [3] Gong, Y., Liu, L., Yang, M., & Bourdev, L. (2014). Compressing deep convolutional networks using vector quantization. arXiv preprint arXiv:1412.6115. [4] Wu, J., Leng, C., Wang, Y., Hu, Q., & Cheng, J. (2016). Quantized convolutional neural networks for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4820-4828). [5] Cheng, Y., Wang, D., Zhou, P., & Zhang, T. (2017). A survey of model compression and acceleration for deep neural networks. arXiv preprint arXiv:1710.09282. [6] Vanhoucke, V., Senior, A., & Mao, M. Z. (2011). Improving the speed of neural networks on CPUs. [7] Gupta, S., Agrawal, A., Gopalakrishnan, K., & Narayanan, P. (2015, June). Deep learning with limited numerical precision. In International Conference on Machine Learning (pp. 1737-1746). [8] Srinivas, S., & Babu, R. V. (2015). Data-free parameter pruning for deep neural networks. arXiv preprint arXiv:1507.06149. [9] Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights and connections for efficient neural network. In Advances in neural information processing systems (pp. 1135-1143). [10] Ullrich, K., Meeds, E., & Welling, M. (2017). Soft weight-sharing for neural network compression. arXiv preprint arXiv:1702.04008. [11] Rigamonti, R., Sironi, A., Lepetit, V., & Fua, P. (2013). Learning separable filters. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2754-2761). [12] Jaderberg, M., Vedaldi, A., & Zisserman, A. (2014). Speeding up convolutional neural networks with low rank expansions. arXiv preprint arXiv:1405.3866. [13] Cohen, T., & Welling, M. (2016, June). Group equivariant convolutional networks. In International conference on machine learning (pp. 2990-2999). [14] Buciluǎ, C., Caruana, R., & Niculescu-Mizil, A. (2006, August). Model compression. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 535-541). [15] Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1492-1500). [16] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708). [17] Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., ... & Kalenichenko, D. (2018). Quantization and training of neural networks for efficient integer- arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2704-2713). [18] Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830. [19] Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016, October). Xnor-net: Imagenet classification using binary convolutional neural networks. In European conference on computer vision (pp. 525-542). Springer, Cham. [20] Lahoud, F., Achanta, R., Márquez-Neila, P., & Süsstrunk, S. (2019). Self-binarizing networks. arXiv preprint arXiv:1902.00730. [21] Sainath, T. N., Kingsbury, B., Sindhwani, V., Arisoy, E., & Ramabhadran, B. (2013, May). Low-rank matrix factorization for deep neural network training with high- dimensional output targets. In 2013 IEEE international conference on acoustics, speech and signal processing (pp. 6655-6659). IEEE. [22] Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531. [23] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. [24] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). [25] Panda, P., Sengupta, A., & Roy, K. (2017). Energy-efficient and improved image recognition with conditional deep learning. ACM Journal on Emerging Technologies in Computing Systems (JETC), 13(3), 1-21. [26] Shafiee, M. S., Shafiee, M. J., & Wong, A. (2019, June). Dynamic Representations Toward Efficient Inference on Deep Neural Networks by Decision Gates. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (pp. 667-675). IEEE. [27] Wu, Z., Nagarajan, T., Kumar, A., Rennie, S., Davis, L. S., Grauman, K., & Feris, R. (2018). Blockdrop: Dynamic inference paths in residual networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 8817-8826). [28] Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., & Weinberger, K. Q. (2017). Multi-scale dense networks for resource efficient image classification. arXiv preprint arXiv:1703.09844. |