帳號:guest(18.225.195.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李岳容
作者(外文):Lee, Yueh-Jung
論文名稱(中文):混和列高設計之全域擺置
論文名稱(外文):Global Placement for Mixed-Row-Height Designs
指導教授(中文):王廷基
指導教授(外文):Wang, Ting-Chi
口試委員(中文):麥偉基
陳勝雄
口試委員(外文):Mak, Wai-Kei
Chen, Sheng-Hsiung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:107062536
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:36
中文關鍵詞:全域擺置混和列高擺置
外文關鍵詞:globalplacementMixed-Row-HeightDesigns
相關次數:
  • 推薦推薦:0
  • 點閱點閱:325
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
傳統上,晶片皆切割成相同高度的列,並由與列同高的標準電路元件組成。相較於高度較矮的標準電路元件,高度較高的標準元件能提供較好的效能,但也有著較大的面積以及功耗代價。為了達到面積以及效能之間的平衡,我們提出混合列高度元件的晶片設計,其中每個標準元件有著不同高度的版本的選擇。同時,依據標準元件的效能需求,我們會選擇選擇其較高或較矮高度的標準元件。例如,位於關鍵路徑上的標準電路元件,為了因應其較高的效能需求,會傾向使用高度較大的標準電路元件來提高效能。反之,對於不在關鍵路徑上的標準電路元件,會傾向使用高度較小的標準電路元件,以避免額外的面積和功效耗費。在先進製程中,全域擺置是以減少電路元件之間連線長度及擁擠度等為目標,初步決定每一個電路元件在晶片中大致上的位置。然而現今學術界的全域擺置工具當中,皆是以等列高元件擺置的流程為主,目前尚未有學術界的全域擺置工具實現混合列高度元件的擺置。因此在本篇論文中,我們利用了現有學術界中僅能處理等列高元件擺置的全域擺置工具,開發了一套可以實現混合列高度元件的全域擺置的流程。實驗結果顯示,在合理的時間範圍內我們可以解決現有等高擺置工具處理混合高度元件時產生的擁擠問題,並使電路元件之間連線長度進一步縮小。
Traditionally, a uniform-row-height design is divided into uniform-height rows and consists of standard cells, whose heights are the same as rows. Compared with cells with the shorter height, cells with the taller height can drive cells better and promote the performance. However, they induce more power consumption and larger cell areas, which result in an unwanted larger die area. To achieve the trade-off between die area and performance, we provide mixed-row-height design, where each standard cell has taller version and short version. Meanwhile, standard cells choose their versions according to the design need. For example, standard cells on critical paths require a higher driving ability to achieve the performance requirement. Accordingly, they adopt tall versions. In contrast, there is no need to promote the driving ability for standard cells away from critical paths. Hence, they choose short versions to save the area. Moreover, we divide a fixed die into interleaving tall rows and short rows for cells with either taller or shorter height to place. In the modern physical design flow of VLSI circuits, global placement will decide a rough position of each standard cell while optimizing objectives such as wirelength and local density overflow. However, there is no existing global placement tool that is capable of dealing with such mixed-row-height design. Thus, in this thesis, we propose a mixed-row-height global placement flow leveraging current academic global placement tools that can only handle uniform-row-height designs. The experimental results show that our proposed flow is able to minimize wirelength and local density overflow in both short-row regions and tall-row regions.
Acknowledgements
摘要i
Abstract ii
1 Introduction 1
2 Problem Formulation and Overview of Our Proposed Algorithm 6
2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Overview of our proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . 8
3 Proposed Algorithm 10
3.1 Initial placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.1 Cell-shape transformation into uniform height . . . . . . . . . . . . . . 10
3.1.2 Uniform-row-height global placement . . . . . . . . . . . . . . . . . . 11
3.1.3 Cell-shape restoration . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.4 Version change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Placement refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Analytical refinement model . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Overflow mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Cell alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 Experimental Results 26
4.1 Effects of placement refinement stage . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Effectiveness of each step in the placement refinement stage . . . . . . . . . . 29
4.3 Runtime analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5 Conclusion 34
References 35
[1] S.-H. Baek, H.-Y. Kim, Y.-K. Lee, D.-Y. Jin, S.-C. Park, and J.-D. Cho, “Ultra-high density
standard cell library using multi-height cell structure,” in Smart Structures, Devices, and
Systems IV, vol. 7268, p. 70–77, 2008.
[2] W. Chow, C. Pui, and E. F. Y. Young, “Legalization algorithm for multiple-row height
standard cell design,” in ACM/EDAC/IEEE Design Automation Conference, p. 1–6, 2016.
[3] N. K. Darav, I. S. Bustany, A. Kennings, and R. Mamidi, “Iccad-2017 cad contest in multideck standard cell legalization and benchmarks,” in Proceedings of the 36th International
Conference on Computer-Aided Design, p. 867–871, IEEE Press, 2017.
[4] Y. Lin, B. Yu, X. Xu, J. R. Gao, N. Viswanathan, W. H. Liu, Z. Li, C. J. Alpert, and
D. Z. Pan, “Mrdp: multiple-row detailed placement of heterogeneous-sized cells for advanced nodes,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, p. 1237–1250, 2016.
[5] S. Dobre, A. B. Kahng, and J. Li, “Mixed cell-height implementation for improved design
quality in advanced nodes,” in 2015 IEEE/ACM International Conference on ComputerAided Design (ICCAD), p. 854–860, 2015.
[6] Y. Zhao, Y. Lin, T. Wang, T. Wang, Y. Wu, H. Lin, and S. Kao, “A mixed-height standard
cell placement flow for digital circuit blocks*,” in Design, Automation Test in Europe
Conference Exhibition, p. 328–331, 2019.
[7] C. Lo, “Mixed-height cell placement legalization for mixed-row-height designs considering displacement and wirelength optimization,” 2019.
[8] P. Spindler, U. Schlichtmann, and F. M. Johannes, “Kraftwerk2—a fast force-directed
quadratic placement approach using an accurate net model,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27, p. 1398–1411, 2008.
[9] D. J.-H. Huang and A. B. Kahng, “Partitioning-based standard-cell global placement with
an exact objective,” in Proceedings of the 1997 International Symposium on Physical Design, p. 18–25, 1997.
[10] T. Taghavi, X. Yang, and B.-K. choi, “Dragon2005: Large-scale mixed-size placement
tool,” in Proceedings of the International Symposium on Physical Design, p. 245–247,
2005.
[11] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze, and M. Xie, “Mpl6: Enhanced multilevel
mixed-size placement,” in Proceedings of the 2006 International Symposium on Physical
Design, p. 212–214, 2006.
[12] T. Chen, Z. Jiang, T. Hsu, H. Chen, and Y. Chang, “Ntuplace3: An analytical placer
for large-scale mixed-size designs with preplaced blocks and density constraints,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27,
p. 1228–1240, 2008.
[13] A. B. Kahng and Qinke Wang, “Implementation and extensibility of an analytic placer,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24,
p. 734–747, 2005.
[14] N. Viswanathan and C. C. . Chu, “Fastplace: efficient analytical placement using cell shifting, iterative local refinement,and a hybrid net model,” IEEE Transactions on ComputerAided Design of Integrated Circuits and Systems, vol. 24, p. 722–733, 2005.
[15] N. W. C, D. Ross, and S. Lu, “Non-linear optimization system and method for wire length
and delay optimization for an automatic electric circuit placer.”
[16] A. B. Kahng and Q. Wang, “A faster implementation of aplace,” in Proceedings of the
2006 International Symposium on Physical Design, p. 218–220, 2006.
[17] T. Chan, J. Cong, and K. Sze, “Multilevel generalized force-directed method for circuit
placement,” in Proceedings of the International Symposium on Physical Design, p. 185–
192, 2005.
[18] H. Eisenmann and F. M. Johannes, “Generic global placement and floorplanning,” in Proceedings of Design and Automation Conference, p. 269–274, 1998.
[19] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich, “Gordian: Vlsi placement by
quadratic programming and slicing optimization,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 10, p. 356–365, 1991.
[20] B. Xu, S. Li, C.-W. Pui, D. Liu, L. Shen, Y. Lin, N. Sun, and D. Z. Pan, “Device layer-aware
analytical placement for analog circuits,” in Proceedings of the International Symposium
on Physical Design, (New York, NY, USA), p. 19–26, 2019.
[21] I. S. Bustany, D. Chinnery, J. R. Shinnerl, and V. Yutsis, “Ispd 2015 benchmarks with fence
regions and routing blockages for detailed-routing-driven placement,” in Proceeding of
International Symposium on Physical Design, p. 157–164, 2015.
[22] T. Hsiung, “Placement legalization for mixed-row-height designs,” 2020
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *