帳號:guest(3.139.236.181)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡嘉展
作者(外文):Tsai, Chia-Chan
論文名稱(中文):CMOS 90奈米 Ka頻段放大器應用於光載毫米波系統之設計與實現
論文名稱(外文):Design and Implementation of 90-nm CMOS Ka-band Amplifiers for Radio-over-Fiber Systems
指導教授(中文):劉怡君
指導教授(外文):Liu, Jenny Yi-Chun
口試委員(中文):徐碩鴻
李俊興
李明昌
口試委員(外文):Hsu, Shuo-Hung
Li, Chun-Hsing
Lee, Ming Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:107061628
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:106
中文關鍵詞:光載毫米波低雜訊放大器功率放大器分路器雜訊設計指數微帶天線
外文關鍵詞:Radio-over-FiberLow-Noise-AmplifierPower-AmplifierSplitterNoise-MeasurePatch-Antenna
相關次數:
  • 推薦推薦:0
  • 點閱點閱:433
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在現今通訊網路的快速發展下,操作於毫米波頻段的通訊技術成為未來重要的研究趨勢。由於高頻段資源豐富,能夠提供大量系統容量,因此擁有更快的速度、更大的頻寬與更低的延遲。毫米波主要的應用包括車輛雷達感測、行動裝置和收發基地台等。但毫米波的波長短,繞射能力差導致傳輸距離受到限制。為了做到完整網路覆蓋,矽光子光載毫米波通訊系統提供有效的解決辦法,此技術也是本論文的核心內容。論文架構主要分為晶片設計和系統整合兩大主題來進行介紹。
本論文將介紹三個操作於Ka-band的毫米波晶片,分別應用於光載毫米波系統的傳輸端與接收端,並利用90-nm CMOS製程來實現,該製程擁有高整合度與低功耗的優點。第一個晶片設計為低雜訊放大器,用來做為在接收端馬赫-曾德爾干涉儀 (Mach Zehnder Modulator, MZM)的驅動晶片。由於為在接收端馬赫-曾德爾干涉儀需求,該放大器利用分路器將訊號變成雙端輸出,並分別擁有11.5 dB和13.2 dB的線性增益,其雜訊指數為2.5 dB。第二個晶片設計為第一個晶片的延續,在架構中增加功率放大器來對輸出功率進行最大化,進而能更穩定的驅動MZM。第三個晶片設計則是用來做為傳輸端轉換並放大訊號的角色,接收來自光電二極體的電流訊號,將之轉換成電壓訊號並由PA放大。該晶片擁有37.32 dB的線性增益,其雜訊指數為4 dB,並擁有約14 dBm的飽和輸出功率。
本論文第二部分將介紹傳輸端系統整合,將晶片三與光二極體整合在PCB板上。透過單頻訊號傳輸、OFDM調變訊號傳輸與電視訊號傳輸來驗證該系統整合設計成功。另外,本論文亦將介紹1x4的陣列天線的設計,將光載毫米波應用於無線傳輸系統。
Under the rapid development of communication network in modern days, technique that operates in millimeter wave band became the most important research area. Due to the abundant resources in high frequency band, it can provide massive system capacity, which brings us faster transmission rate, wider bandwidth and lower latency. The main applications of millimeter wave include automotive radar, mobile devices and transceiver communication station. But the wavelength of millimeter-wave is too short, and the diffraction is too weak which limited the transmission distance. In order to cover the network completely, Radio-over-Fiber (RoF) system provides an efficient solution, which is the core content of this theory. The thesis structure can simply divide into two subject, chip design and system integration.
In this thesis, three millimeter-wave circuits that operate in Ka-band for RoF systems will be presented. They are fabricated in a 90-nm CMOS process. The process has advantages of high integration and low power dissipation. The first design is low-noise amplifier, which is used for driving Mach Zehnder Modulator (MZM) in RoF receiver. According to the requirements of the MZM, a splitter is used to generate two output signals. They have 11.5 dB and 13.25 dB power gain, respectively, and 2.5 dB noise figure. The second design is the extended version of the first chip with a power amplifier added to maximum the output power, in order to drive the MZM more stably. The third design is used in RoF TX system. It receives the current signals from photo diode (PD), and converts them into voltage signals then amplified by them. This chip has 37.32 dB power gain, 4 dB noise figure and 14 dBm saturation output power.
In the second part of this thesis, the transmitter (TX) RoF integration is presented. The integration includes the integrated circuits and the PD on a printed circuit board (PCB). Through a single tone testing, OFDM modulated signal testing and TV HDMI signal testing, we can verify the functionality of the integrated transmitter. Furthermore, we will introduce 1x4 patch antenna design, which is the critical device that allows RoF system to become the true wireless communication system.
摘要 i
ABSTRACT ii
Contents iv
List of Figures viii
List of Tables xiii
Chapter 1 Introduction 14
1.1. Motivation 14
1.2. Introduction to Millimeter-Wave and Ka-band 15
1.3. Introduction to Silicon Photonics Radio Over Fiber Communication System 17
1.4. Thesis Organization 19
Chapter 2 Overview of RF design and Optical Device 20
2.1. Passive Device 20
2.1.1 Inductors 20
2.1.2 Capacitors 22
2.2. General Specifications in Circuit Design 24
2.2.1 S-parameter 24
2.2.2 Power gain 26
2.2.3 Noise Figure 27
2.2.4 P1dB 27
2.2.5 IIP3 28
2.3. Optical Device 30
2.3.1 Photo Diode (PD) 30
2.3.2 Mach Zehnder Modulator (MZM) 31
Chapter 3 Design of Ka-Band Low Noise Amplifier for Radio-over-Fiber System 32
3.1. Motivation 32
3.2. Design of Ka-band Low-Noise Amplifier with two in-phase outputs 33
3.2.1 Design Flow 33
3.2.1.1 Three-stage Low-Noise Amplifier 33
3.2.1.2 Noise Measure 34
3.2.1.3 DC Bias Selection by Noise Measure 36
3.2.1.4 NMOS size selection by noise measure 38
3.2.1.5 Gain stage Design 39
3.2.1.6 Variable resistor 41
3.2.2 Comparison of Simulation and Measurement Results 42
3.2.2.1 Measurement setup 43
3.2.2.2 Results and Comparison 45
3.2.3 Summary 55
3.3. Design of Receiver Front-End in a 90-nm CMOS for Driving MZM 56
3.3.1 Design Flow 57
3.3.1.1 Two stage cascade LNA design 57
3.3.1.2 PA and Splitter Design 57
3.3.1.3 Size and bias selection of PA 58
3.3.1.4 Load pull matching 59
3.3.1.5 Breakdown prevention design 60
3.3.2 Simulation and Measurement Results Comparison 62
3.3.2.1 Results and comparison 63
3.3.3 Problem solving 70
3.3.4 Summary 73
Chapter 4 Design of Ka-band Power Amplifier for Transmitter of Radio-over-Fiber System 75
4.1. Motivation 75
4.2. Design of Power Amplifier in 90-nm CMOS for Radio over Fiber System 76
4.2.1 Design Flow 77
4.2.1.1 Low noise amplifier design 77
4.2.1.2 PA design 78
4.2.2 Simulation and Measurement Results Comparison 79
4.2.2.1 Results and comparison 80
4.2.3 Summary 85
4.3. Design of 28-GHz Antenna 86
4.3.1 Design Flow 86
4.3.1.1 Fringing effect of microstrip line 86
4.3.1.2 Design of patch antenna 87
4.3.2 HFSS Simulation 90
4.3.3 Measurement Results Analysis 91
4.4. Radio over Fiber system transceiver mode integration and testing 94
4.4.1 PCB Design 95
4.4.2 Single tone testing 96
4.4.3 OFDM testing 98
4.4.4 HDMI TV signal testing 100
Chapter 5 Conclusion and Future work 102
Reference 104

[1] T. S. Rappaport, J. N. Murdock, F. Gutierrez “State of the art in 60 GHz integrated circuits & systems for wireless communications” Proc.IEEE, vol. 99, no. 8, pp.1390–1436, August 2011.
[2] Joel Conover “Tiny waves, big challenges; Getting 5G mmWave mobility right” EDN, November, 2018
[3] Samsung “5G Vision”, page 7, August 2015
[4] Press Release “NCC Concludes Assignment Stage of 5G Auction” NCC, February 2020
[5] Beas, J., Castanon, G., Aldaya, I., Aragon-Zavala,A., et al., ”Millimeter-Wave Frequency Radio Over Fiber Systems; A Survey” IEEE Communications surveys & tutorials, vol. 15, issue 4, pp. 1593-1618, Mar.2013
[6] Cheng-Bo Chen, “A Variable Gain Low Noise Amplifier Design for IEEE 802.11a 5 GHz U-NII Band”, July 2004
[7] Yanyang Zhou, “Modeling and optimization of a single drive push–pull silicon Mach–Zehnder modulator”, Vol. 4, No. 4 Photon. Res. 2016 IEEE, August 2016
[8] Yanyang Zhou, “Linearity Characterization of a Dual–Parallel Silicon Mach–Zehnder Modulator”, Vol. 8, No. 6, December 2016 IEEE
[9] E. Adabi, B. Heydari, M. Bohsali, A. Niknejad, “30 GHz CMOS Low Noise Amplifier”, Proc. IEEE RFIC Symposium, 2007.
[10] K. Yu, Y. Lu, D. Chang, V. Liang, M. Chang, “K-Band Low-Noise Amplifiers Using 0.18 um CMOS Technology”, IEEE Microwave and Wireless Components Letters, Vol. 14, Nr. 3, pp. 106-108, July 2004.
[11] Sanduleanu, M. A., Zhang, G., & Long, J. R. (2006, June). “31-34GHz low noise amplifier with on-chip microstrip lines and inter-stage matching in 90-nm baseline CMOS.” IEEE Proceedings of Radio Frequency Integrated Circuits (RFIC) Symposium, 2006 (pp. 4-pp).
[12] J. F. Yeh, C. Y. Yang, H. C. Kuo, and H. R. Chuang, “A 24 GHz transformer-based single-in differential-out CMOS low-noise amplifier,” in Proc. IEEE RFIC Symp,2009, pp. 299–302.
[13] U. Kodak, G. Rebeiz, “A 42mW 26-28 GHz Phased-Array Receive Channel with 12dB Gain, 4dB NF and 0dBm IIP3 in 45nm CMOS SOI,” IEEE RFIC, pp.348-351, 2016.
[14] AK. Kibaroglu, M. Sayginer, and G. M. Rebeiz, “An ultra-low-cost 32-element 28GHz phased-array transceiver with 41 dBm EIRP and 1.0–1.6 Gbps 16-QAM link at 300 meters,” in Proc. IEEE RFIC, Honolulu, HI, USA, Jun. 2017, pp. 73–76.
[15] S. Shakib, H.-C. Park, J. Dunworth, V. Aparin, and K. Entesari, “A 28 GHz efficient linear power amplifier for 5G phased arrays in 28 nm bulk CMOS,” in IEEE ISSCC Dig. Tech. Papers, Jan./Feb. 2016, pp. 352–353
[16] P. Sakalas, J. Dang, A. Noculak, M. Hinz, and B. Meinerzhagen, "A K-band High Gain, Low Noise Figure LNA using 0.13 µm Logic CMOS Technology," in Microwave Integrated Circuits Conference, 2015
[17] Kong, Sunwoo, et al. "A 28-GHz CMOS LNA with Stability Enhanced G mBoosting Technique Using Transformers." 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). IEEE, 2019.
[18] Pankaj Kumar, Priyesh Saurav, Pranjal Jalan, Shudhanshu Jaiswal, Gaurav Mehra,“90 nm CMOS Resistive Feedback LNA with 34 dB Gain for 25 GHz Applications,” in 7th International Conference on Advanced Computing and Communication Systems (ICACCS), 2021
[19] Bodhisatwa Sadhu, Örjan Renström, Bo Bokinge, Jan-Erik Thillberg, Mark Ferriss “A 28-GHz 32-Element TRX Phased-Array IC With Concurrent Dual-Polarized Operation and Orthogonal Phase and Gain Control for 5G Communications”, IEEE Journal of Solid-State circuits, Vol. 52, No. 12, December 2017
[20] H. Koo et al., “Highly Efficient 24-GHz CMOS Linear Power Amplifier with Adaptive Bias Circuits,” Asia-Pacific Microw. Conf., pp. 7-9, Dec. 2012
[21] P.-H. Chen, et al., “A K-band 24.1% PAE wideband unilateralized CMOS power amplifier using differential transmission-line transformers in 0.18-μm CMOS,” IEEE Microwave and Wireless Components Letters, vol.26, no. 11, pp. 924-926, Nov. 2016.
[22] K. Kim and C. Nguyen, “Design of a K-Band Amplifier for High Gain Output Power and Efficiency on 0.18-um SiGe BiCMOS Process,” Asia-Pacific Microw.Conf., pp. 594-596, 2014
[23] P. C. Huang, et al., “A 22-dBm 24-GHz power amplifier using 0.18-μm CMOS technology,” in IEEE MTT-S Int. Dig., June 2010, pp. 248-251
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *