|
[1] C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. Dávila, C. E. Graves, Z. Li, J. P. Strachan, P. Lin, Z. Wang, M. Barnell, Q. Wu, R. S. Williams, J. J. Yang, and Q. Xia, “Analogue signal and image processing with large memristor crossbars.” Nature Electronics, vol. 1, no. 1, pp. 52-59, Dec. 2018. [2] C. X. Xue, W. H. Chen, J. S. Liu, J. F. Li, W. Y. Lin, W. E. Lin, J. H. Wang, W. C. Wei, T. Y. Huang, T. W. Chang, T. C. Chang, H. Y. Kao, Y. C. Chiu, C. Y. Lee, Y. C. King, C. J. Lin, R. S. Liu, C. C. Hsieh, K. T. Tang and M. F. Chang, “Embedded 1-Mb ReRAM-based computing-in-memory macro with multibit input and weight for CNN-based AI edge processors.” IEEE Journal of Solid-State Circuits, vol. 55, no. 1, pp. 203-215, Jan. 2020. [3] B. Yan, Q. Yang, W. H. Chen, K. T. Chang, J. W. Su, C. H. Hsu, S. H. Li, H. Y. Lee, S. S. Sheu, M. S. Ho, Q. Wu, M. F. Chang, Y. Chen and H. Li, “RRAM-based spiking nonvolatile computing-in-memory processing engine with precision-configurable in situ nonlinear activation.” In Proc. 2019 Symposium on VLSI Technology, pp. T86-T87, June 2019. [4] F. N. Buhler, P. Brown, J. Li, T. Chen, Z. Zhang and M. P. Flynn, “A 3.43 TOPS/W 48.9 pJ/pixel 50.1 nJ/classification 512 analog neuron sparse coding neural network with on-chip learning and classification in 40nm CMOS.” In Proc. 2017 Symposium on VLSI Circuits, pp. C30-C31, June 2017. [5] L.-T. Wang, C.-W. Wu and X. Wen, “VLSI Test Principles and Architectures: Design for Testability.” Elsevier, 2006 [6] Ching-Yi Chen, Hsiu-Chuan Shih, Cheng-Wen Wu, Chih-He Lin, Pi-Feng Chiu, Shyh-Shyuan Sheu, and F. T. Chen, "RRAM Defect Modeling and Failure Analysis Based on March Test and a Novel Squeeze-Search Scheme," in IEEE Transactions on Computers, vol. 64, no. 1, pp. 180-190, 1 Jan. 2015. [7] Y.-X. Chen and J.-F. Li, “"Fault modeling and testing of 1T1R memristor memories," 2015 IEEE 33rd VLSI Test Symposium (VTS), Napa, CA, USA, pp. 1-6, June 2015. [8] S. Kannan, R. Karri and O. Sinanoglu, "Sneak path testing and fault modeling for multilevel memristor-based memories," 2013 IEEE 31st International Conference on Computer Design (ICCD), Asheville, NC, USA, pp. 215-220, Nov. 2013. [9] N. Z. Haron and S. Hamdioui, "On Defect Oriented Testing for Hybrid CMOS/Memristor Memory," 2011 Asian Test Symposium, New Delhi, India, pp. 353-358, Dec. 2011. [10] S. Kannan, N. Karimi, R. Karri and O. Sinanoglu, "Modeling, Detection, and Diagnosis of Faults in Multilevel Memristor Memories," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 5, pp. 822-834, May. 2015. [11] M. Fieback, M. Taouil and S. Hamdioui, "Testing Resistive Memories: Where are We and What is Missing?," 2018 IEEE International Test Conference (ITC), Phoenix, AZ, USA, pp. 1-9, Jan. 2018. [12] S. Shchanikov, A. Zuev, I. Bordanov, S. Danilin, D. Korolev, A. Belov, and V. Kazantsev, (2020). “Design and simulation of memristor-based artificial neural network for bidirectional adaptive neural interface.” arXiv preprint arXiv:2004.00154. Mar. 2020. [13] D. Querlioz, O. Bichler and C. Gamrat, "Simulation of a memristor-based spiking neural network immune to device variations," The 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, pp. 1775-1781, Oct. 2011. [14] E. Vatajelu, G. Di Natale and L. Anghel, "Special Session: Reliability of Hardware-Implemented Spiking Neural Networks (SNN)," 2019 IEEE 37th VLSI Test Symposium (VTS), Monterey, CA, USA, pp. 1-8, July 2019. [15] A. P. Johnson, J. Liu, A. G. Millard, S. Karim, A. M. Tyrrell, J. Harkin, J. Timmis, L. J. McDaid, and D. M. Halliday, "Homeostatic Fault Tolerance in Spiking Neural Networks: A Dynamic Hardware Perspective," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 2, pp. 687-699, Feb. 2018. [16] S. A. El-Sayed, T. Spyrou, A. Pavlidis, E. Afacan, L. A. Camunas-Mesa, B. Linares-Barranco, and H.-G. Stratigopoulos "Spiking Neuron Hardware-Level Fault Modeling," 2020 IEEE 26th International Symposium on On-Line Testing and Robust System Design (IOLTS), pp. 1-4, Aug. 2020. [17] T. Spyrou, S. El-Sayed, E. Afacan, L. Camuñas-Mesa, B. Linares-Barranco and H.G. Stratigopoulos, “Neuron Fault Tolerance in Spiking Neural Networks.” In Proc. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Feb. 2021. [18] N. Z. Haron and S. Hamdioui, "DfT schemes for resistive open defects in RRAMs," 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, pp. 799-804, Apr. 2012. [19] S. Kannan, J. Rajendran, R. Karri and O. Sinanoglu, "Sneak-path Testing of Memristor-based Memories," 2013 26th International Conference on VLSI Design and 2013 12th International Conference on Embedded Systems, Pune, India, pp. 386-391, Nov. 2013. [20] S. Kannan, J. Rajendran, R. Karri and O. Sinanoglu, "Sneak-Path Testing of Crossbar-Based Nonvolatile Random Access Memories," in IEEE Transactions on Nanotechnology, vol. 12, no. 3, pp. 413-426, May. 2013. [21] G. K. Johnsen, “An introduction to the memristor – a valuable circuit element in bioelectricity and bioimpedance,” Journal of Electrical Bioimpedance, vol. 3, no. 1, pp. 20–28, Aug. 2012. [22] S. Kannan, N. Karimi, R. Karri and O. Sinanoglu, "Detection, diagnosis, and repair of faults in memristor-based memories," 2014 IEEE 32nd VLSI Test Symposium (VTS), Napa, CA, USA, pp. 1-6, May. 2014. [23] H. Liu, H. Lv, B. Yang, X. Xu, R. Liu, Q. Liu, S. Long, and M. Liu, Uniformity Improvement in 1T1R RRAM With Gate Voltage Ramp Programming," in IEEE Electron Device Letters, vol. 35, no. 12, pp. 1224-1226, Dec. 2014. [24] Chi-Feng Wu, Chih-Tsun Huang and Cheng-Wen Wu, "RAMSES: a fast memory fault simulator," In Proc. 1999 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (EFT'99), Albuquerque, NM, USA, pp. 165-173, Nov. 1999. [25] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, and A. Lerer, “Automatic differentiation in pytorch.”, In Proc.NIPS 2017 Workshop, Oct. 2017. |