帳號:guest(13.58.50.62)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭學鴻
作者(外文):Cheng, Hsueh-Hung
論文名稱(中文):以憶阻器建構之脈衝神經網絡的錯誤模型和測試演算法
論文名稱(外文):Fault Models and Test Algorithms for Memristor-Based Spiking Neural Network
指導教授(中文):吳誠文
指導教授(外文):Wu, Cheng-Wen
口試委員(中文):呂學坤
李昆忠
黃錫瑜
口試委員(外文):Lu, Shyue-Kung
Lee, Kuen-Jong
Huang, Shi-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:107061617
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:56
中文關鍵詞:人工智慧缺陷錯誤模型錯誤模擬器記憶體測試憶阻器脈衝神經網路測試演算法
外文關鍵詞:artificial intelligencedefectfault modelfault simulatormemory testingmemristorspiking neural network (SNN)test algorithm
相關次數:
  • 推薦推薦:0
  • 點閱點閱:212
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,為了改善人工智慧運算的表現與能源效率,研究人員探索了由憶阻器建構的深度神經網路與脈衝神經網路架構。然而,憶阻器元件容易受到製程偏移及缺陷的影響,這會導致系統中的各種錯誤和故障。在本篇論文中,我們提出了一種基於憶阻器的脈衝神經網路測試方法。首先,我們對脈衝神經網路硬體進行電路層級模擬,過程中我們考慮了製程偏移對電路的影響,並分別加入所有憶阻器陣列中可能發生的開路與短路缺陷及憶阻器錯誤,並將模擬結果與無缺陷電路比較。我們從分析結果得出所加入的缺陷與錯誤可以被簡單地分成二個錯誤模型,也就是慢積分錯誤與快積分錯誤。我們也基於脈衝神經網路硬體開發了一個錯誤模擬器,可用於模擬硬體中的缺陷與錯誤,以及模擬我們提出的March-SNN測試演算法。在March-SNN演算法中,透過輸入指定的測試型樣 (輸入脈衝) 並觀察輸出的測試回應 (輸出脈衝) 來進行測試。由於March-SNN是使用脈衝神經網路電路中的現有操作來進行測試,因此能夠減少額外的硬體成本。實驗結果表明,March-SNN能夠100%覆蓋我們提出的缺陷與錯誤模型。

Memristor-based computing architectures for deep neural network (DNN) and spiking neural network (SNN) have been explored in recent years, for improving the performance and energy efficiency of AI computing. However, memristor cells are susceptible to manufacturing defects and process variations, which will result in various faults and failures in the system. In this thesis, we propose a test method for memristor-based SNN hardware. We first perform circuit-level simulations of the SNN hardware, taking process variations into account. All feasible open and short defects and the memristor program fault are respectively injected and compared with the fault-free circuit. From the analysis result, we conclude that the injected defects and faults can be covered by two simple fault models, i.e., the Slow Integration Fault (SIF) and Fast Integration Fault (FIF). We also develop a fault simulator that can be used to simulate March-like test algorithms for the proposed defects and fault models, based on the memristor-based SNN circuit. We propose a March-like test algorithm, called March-SNN. Testing is done by applying the specified input test patterns (input spikes) according to the algorithm and observing the output test responses (output spikes), with existing operations of the SNN circuit to reduce additional hardware overhead. Experimental results show that March-SNN covers 100% of the proposed defects and fault models.
摘要 i
Abstract ii
Contents iii
List of Figures v
List of Tables vii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Related Works 2
1.3 Proposed Method and Results 3
1.4 Thesis Organization 4
Chapter 2 Background 6
2.1 Introduction to Memristor Array and Operation 6
2.1.1 Memristor Resistive Switching Mechanism 6
2.1.2 Memristor State 7
2.1.3 Memristor Array 8
2.2 Introduction to Spiking Neural Network 9
2.3 Memristor-Based Spiking Neural Network 10
Chapter 3 Proposed Defect and Fault Models 15
3.1 Fault-Free Behavior 15
3.2 Defects and Fault Models 17
3.2.1 Open Defects 18
3.2.2 Short Defects 19
3.2.3 Memristor Faults 20
3.2.4 Transistor Faults 21
3.3 Simulation Results 22
3.4 Slow Integration Fault Model 24
3.5 Fast Integration Fault Model 25
Chapter 4 Proposed Test Algorithm and Spiking Neural Network Fault Simulator 27
4.1 SNN Fault Simulator 27
4.1.1 Input Pattern and Memristor State Array 29
4.1.2 Memristor and Transistor Variation Injection 30
4.1.3 Fault Injection 33
4.1.4 Output Response 33
4.2 Proposed Test Algorithm 35
Chapter 5 Experimental Results 43
5.1 Experimental Settings 43
5.2 Test Algorithms and Fault coverage 44
5.3 Discussion 47
Chapter 6 Conclusion and Future Work 50
6.1 Conclusion 50
6.2 Future Work 50
Bibliography 52
[1] C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. Dávila, C. E. Graves, Z. Li, J. P. Strachan, P. Lin, Z. Wang, M. Barnell, Q. Wu, R. S. Williams, J. J. Yang, and Q. Xia, “Analogue signal and image processing with large memristor crossbars.” Nature Electronics, vol. 1, no. 1, pp. 52-59, Dec. 2018.
[2] C. X. Xue, W. H. Chen, J. S. Liu, J. F. Li, W. Y. Lin, W. E. Lin, J. H. Wang, W. C. Wei, T. Y. Huang, T. W. Chang, T. C. Chang, H. Y. Kao, Y. C. Chiu, C. Y. Lee, Y. C. King, C. J. Lin, R. S. Liu, C. C. Hsieh, K. T. Tang and M. F. Chang, “Embedded 1-Mb ReRAM-based computing-in-memory macro with multibit input and weight for CNN-based AI edge processors.” IEEE Journal of Solid-State Circuits, vol. 55, no. 1, pp. 203-215, Jan. 2020.
[3] B. Yan, Q. Yang, W. H. Chen, K. T. Chang, J. W. Su, C. H. Hsu, S. H. Li, H. Y. Lee, S. S. Sheu, M. S. Ho, Q. Wu, M. F. Chang, Y. Chen and H. Li, “RRAM-based spiking nonvolatile computing-in-memory processing engine with precision-configurable in situ nonlinear activation.” In Proc. 2019 Symposium on VLSI Technology, pp. T86-T87, June 2019.
[4] F. N. Buhler, P. Brown, J. Li, T. Chen, Z. Zhang and M. P. Flynn, “A 3.43 TOPS/W 48.9 pJ/pixel 50.1 nJ/classification 512 analog neuron sparse coding neural network with on-chip learning and classification in 40nm CMOS.” In Proc. 2017 Symposium on VLSI Circuits, pp. C30-C31, June 2017.
[5] L.-T. Wang, C.-W. Wu and X. Wen, “VLSI Test Principles and Architectures: Design for Testability.” Elsevier, 2006
[6] Ching-Yi Chen, Hsiu-Chuan Shih, Cheng-Wen Wu, Chih-He Lin, Pi-Feng Chiu, Shyh-Shyuan Sheu, and F. T. Chen, "RRAM Defect Modeling and Failure Analysis Based on March Test and a Novel Squeeze-Search Scheme," in IEEE Transactions on Computers, vol. 64, no. 1, pp. 180-190, 1 Jan. 2015.
[7] Y.-X. Chen and J.-F. Li, “"Fault modeling and testing of 1T1R memristor memories," 2015 IEEE 33rd VLSI Test Symposium (VTS), Napa, CA, USA, pp. 1-6, June 2015.
[8] S. Kannan, R. Karri and O. Sinanoglu, "Sneak path testing and fault modeling for multilevel memristor-based memories," 2013 IEEE 31st International Conference on Computer Design (ICCD), Asheville, NC, USA, pp. 215-220, Nov. 2013.
[9] N. Z. Haron and S. Hamdioui, "On Defect Oriented Testing for Hybrid CMOS/Memristor Memory," 2011 Asian Test Symposium, New Delhi, India, pp. 353-358, Dec. 2011.
[10] S. Kannan, N. Karimi, R. Karri and O. Sinanoglu, "Modeling, Detection, and Diagnosis of Faults in Multilevel Memristor Memories," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 5, pp. 822-834, May. 2015.
[11] M. Fieback, M. Taouil and S. Hamdioui, "Testing Resistive Memories: Where are We and What is Missing?," 2018 IEEE International Test Conference (ITC), Phoenix, AZ, USA, pp. 1-9, Jan. 2018.
[12] S. Shchanikov, A. Zuev, I. Bordanov, S. Danilin, D. Korolev, A. Belov, and V. Kazantsev, (2020). “Design and simulation of memristor-based artificial neural network for bidirectional adaptive neural interface.” arXiv preprint arXiv:2004.00154. Mar. 2020.
[13] D. Querlioz, O. Bichler and C. Gamrat, "Simulation of a memristor-based spiking neural network immune to device variations," The 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, pp. 1775-1781, Oct. 2011.
[14] E. Vatajelu, G. Di Natale and L. Anghel, "Special Session: Reliability of Hardware-Implemented Spiking Neural Networks (SNN)," 2019 IEEE 37th VLSI Test Symposium (VTS), Monterey, CA, USA, pp. 1-8, July 2019.
[15] A. P. Johnson, J. Liu, A. G. Millard, S. Karim, A. M. Tyrrell, J. Harkin, J. Timmis, L. J. McDaid, and D. M. Halliday, "Homeostatic Fault Tolerance in Spiking Neural Networks: A Dynamic Hardware Perspective," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 2, pp. 687-699, Feb. 2018.
[16] S. A. El-Sayed, T. Spyrou, A. Pavlidis, E. Afacan, L. A. Camunas-Mesa, B. Linares-Barranco, and H.-G. Stratigopoulos "Spiking Neuron Hardware-Level Fault Modeling," 2020 IEEE 26th International Symposium on On-Line Testing and Robust System Design (IOLTS), pp. 1-4, Aug. 2020.
[17] T. Spyrou, S. El-Sayed, E. Afacan, L. Camuñas-Mesa, B. Linares-Barranco and H.G. Stratigopoulos, “Neuron Fault Tolerance in Spiking Neural Networks.” In Proc. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Feb. 2021.
[18] N. Z. Haron and S. Hamdioui, "DfT schemes for resistive open defects in RRAMs," 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, pp. 799-804, Apr. 2012.
[19] S. Kannan, J. Rajendran, R. Karri and O. Sinanoglu, "Sneak-path Testing of Memristor-based Memories," 2013 26th International Conference on VLSI Design and 2013 12th International Conference on Embedded Systems, Pune, India, pp. 386-391, Nov. 2013.
[20] S. Kannan, J. Rajendran, R. Karri and O. Sinanoglu, "Sneak-Path Testing of Crossbar-Based Nonvolatile Random Access Memories," in IEEE Transactions on Nanotechnology, vol. 12, no. 3, pp. 413-426, May. 2013.
[21] G. K. Johnsen, “An introduction to the memristor – a valuable circuit element in bioelectricity and bioimpedance,” Journal of Electrical Bioimpedance, vol. 3, no. 1, pp. 20–28, Aug. 2012.
[22] S. Kannan, N. Karimi, R. Karri and O. Sinanoglu, "Detection, diagnosis, and repair of faults in memristor-based memories," 2014 IEEE 32nd VLSI Test Symposium (VTS), Napa, CA, USA, pp. 1-6, May. 2014.
[23] H. Liu, H. Lv, B. Yang, X. Xu, R. Liu, Q. Liu, S. Long, and M. Liu, Uniformity Improvement in 1T1R RRAM With Gate Voltage Ramp Programming," in IEEE Electron Device Letters, vol. 35, no. 12, pp. 1224-1226, Dec. 2014.
[24] Chi-Feng Wu, Chih-Tsun Huang and Cheng-Wen Wu, "RAMSES: a fast memory fault simulator," In Proc. 1999 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (EFT'99), Albuquerque, NM, USA, pp. 165-173, Nov. 1999.
[25] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, and A. Lerer, “Automatic differentiation in pytorch.”, In Proc.NIPS 2017 Workshop, Oct. 2017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *