|
N. Takeuchi, N. Sugimoto, H. Baba, and K. Sakurai, “Random modulation CW lidar,” Applied Optics, vol. 22, no. 9, pp. 1382-1386, May. 1983.
F.-Y. Lin and J.-M. Liu, “Chaotic Lidar,” IEEE J. Selected Topics in Quantum Electronics, vol. 10, no. 5, pp.991-997, Sep/Oct. 2004.
M. Vollmer, K.-P. Möllmann, and J. A. Shaw, “The optics and physics of near infrared imaging,” Proc. SPIE 9793, 97930Z (2015).
A. Cevrero et al., “29.1 A 64 Gb/s 1.4 pJ/b NRZ optical-receiver datapath in 14 nm CMOS FinFET,” IEEE Int. Solid-State Circuits Conf.(ISSCC) Dig.Tech. Papers,Feb. 2017, pp. 482–483.
Sherif Galal and Behzad Razavi, “40-Gb/s Amplifier and ESD Protection Circuit in 0.18-um CMOS Technology,” IEEE Journal of Solid-State Circuits,vol. 39, no. 12, pp. 2389-2396, Dec. 2004
Jun-De Jin and Shawn S. H. Hsu, “A 40-Gb/s Transimpedance Amplifier in 0.18-um CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 43,no. 6, pp. 1449-1457, June 2008.
Xiaojun Bi, Zhen Gu, and Qinfen Xu, “Analysis and Design of Ultra-Large Dynamic Range CMOS Transimpedance Amplifier with Automatically- Controlled Multi-Current-Bleeding Paths,” IEEE Trans. On Circuits and Systems I, vol. 66, no. 9, pp. 3266-3278, Sept. 2019.
S.-C. Tsou, C.-F. Li, and P.-C. Huang, “A Low-Power CMOS Linear-in-dB Variable Gain Amplifier with Programmable Bandwidth and Stable Group Delay,” IEEE Trans. on Circuits and Systems II, vol. 53, no. 12, pp. 1436-1440,Dec. 2006.
M. Perenzoni, et al., “A 64x64-Pixel Digital Silicon Photomultiplier Direct ToF Sensor with 100MPhotons/s/pixel Background Rejection and Imaging/Altimeter Mode with 0.14 Precision up to 6km for Spacecraft Navigation and Landing,” ISSCC Dig. Tech. Papers,pp. 118-119, Feb. 2016.
C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frame/s 340 x 96- Pixel Time-of-Flight Depth Sensor in 0.18-um CMOS,” IEEE Journal of Solid-State Circuits, vol. 48, no. 2, pp. 559-572, Feb.2013.
J.-S. Youn, M.-J. Lee, K.-Y. Park, and W.-Y. Choi, “10-Gb/s 850-nm CMOS OEIC Receiver with a Silicon Avalanche Photodetector,” IEEE Journal of Quantum Electronics, vol. 48, no. 2, pp. 229-236, Feb. 2012.
H. Tsuji, M. Imaki, N. Kotake, A. Hirai, M. Nakaji, and S. Kameyama, "Range imaging pulsed laser sensor with two-dimensional scanning of transmitted beam and scanless receiver using high-aspect avalanche photodiode array for eye-safe wavelength" Optical Engineering, vol. 56(3),031216, Mar. 2017.
Christian Kromer, et al, “A Low-Power 20-GHz 52-dB Transimpedance Amplifier in 80-nm CMOS” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 6, pp.885-894 JUNE 2004 [14] M.H. Taghavi, et al,“10-Gb/s 0.13-μm CMOS Inductorless Modfified-RGC Transimpedance Amplifier,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 6, pp.885-894 JUNE 2004
M.H. Taghavi, et al, “10-Gb/s 0.13-μm CMOS Inductorless Modfified- RGC Transimpedance Amplifier,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 62, NO. 8, pp.1971-1980, AUGUST 2015
S. Ray and M. Hella, “A 30–75 dB2.5 GHz 0.13-μm CMOS receiver frontend with large input capacitance tolerance for short-range optical ommunication,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 9, pp. 1404–1415, Sep. 2016
P. P. Dash, G. Cowan, and O. Liboiron-Ladouceur, “Inductorless, powerlproportional, optical receiver front-end in TSMC 90 nm,” Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp. 1127–1130,May 2013. |