帳號:guest(18.217.107.229)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪健倫
作者(外文):Hong, Jian-Lun
論文名稱(中文):應用於即時取樣系統之自偏壓四相位時脈產生器
論文名稱(外文):A Quadrature Clock Generator Based on Self-Biased Techniques for Real-Time Sampling System
指導教授(中文):謝秉璇
指導教授(外文):Hsieh, Ping-Hsuan
口試委員(中文):楊家驤
劉怡君
口試委員(外文):Yang, Chia-Hsiang
Liu, Yi-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:107061615
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:69
中文關鍵詞:取樣系統時脈產生器四相位除頻器鎖相迴路時脈分佈
外文關鍵詞:Sampling systemClock GeneratorQuadrature frequency dividerPhase-locked loopClock distribution
相關次數:
  • 推薦推薦:0
  • 點閱點閱:218
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文呈獻了兩種生成正交時脈信號的方法,此信號應用於時序交錯式5-GS/s取樣系統。為了提供可擴展的取樣頻率,兩個時脈產生器的操作頻率可以由150MHz至1.25GHz進行廣泛調整。提出的第一個實現方式基於除頻器,因數位的特性而具有降低電路複雜性和面積佔用的優勢。此外,採用同步的重置訊號確保所需的輸出相位順序。論文中更強調第二種實現方式,使用鎖相迴路以達到較寬的操作範圍。透過自偏壓技術,鎖相迴路自我調整其頻寬,從而產生隨著參考時脈縮放的固定迴路動態。此外,我們也描述了幾種用於減小正交相位誤差的時脈分配技術。
使用90奈米互補式金氧半導體製程,量測顯示壓控振盪器表現出從20MHz至1130MHz的98%頻率可調範圍,且鎖相迴路在1.25GHz輸出頻率下的方均根抖動為3.3ps,而峰對峰抖動為33.6ps。使用625MHz參考輸入,相位雜訊於偏置頻率1MHz處測得為-115dBc/Hz。晶片於1伏特供壓下消耗4毫瓦,核心面積佔約0.016平方毫米。
This thesis presents two approaches for generating quadrature clock signals applied to a time-interleaved 5-GS/s sampling system. To offer a scalable sampling rate, the operating frequency of both clock generators can be widely tuned from 150 MHz to 1.25 GHz. Based on a frequency divider, the first proposed implementation has the advantage of reducing the circuit complexity and area occupation due to its digital nature. In addition, a synchronous reset is employed to ensure the desired output phase sequence. The second implementation, on which we put more emphasis, achieves a wide operating range by using a phase-locked loop (PLL). With self-biased techniques, the PLL adaptively adjusts its bandwidth, thus producing constant loop dynamics that scale with the reference clock. Furthermore, we describe several clock distribution techniques to minimize quadrature phase error.
Fabricated in a 90-nm CMOS process, measurement results show that the VCO exhibits a tuning range of 98% from 20 MHz to 1130 MHz, and the PLL achieves a RMS jitter of 3.3 ps and a peak-to-peak jitter of 33.6 ps at 1.25 GHz output frequency. With a 625-MHz input reference, the phase noise is measured to be -115 dBc/Hz at 1-MHz offset. It consumes 4 mW from a 1-V supply and occupies an active area of about 0.016 mm2.
Contents i
List of Tables iii
List of Figures iv
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Implementation of Divider-Based Quadrature Clock Generator 4
2.1 Quadrature Divider . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Design of Synchronous Reset . . . . . . . . . . . . . . . . . . . . 6
2.3 Differential Clock Buffers . . . . . . . . . . . . . . . . . . . . . . 9
3 Implementation of PLL-Based Quadrature Clock Generator 12
3.1 Analysis of PLL Linear Model . . . . . . . . . . . . . . . . . . . . 13
3.2 Fundamentals of Self-Biased PLLs . . . . . . . . . . . . . . . . . 19
iCONTENTS
3.3 PLL Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Phase Frequency Detector . . . . . . . . . . . . . . . . . . 23
3.3.2 Voltage-Controlled Oscillator . . . . . . . . . . . . . . . . 25
3.3.3 Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.4 Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.5 Edge-Combining Clock Encoder . . . . . . . . . . . . . . 40
3.4 PLL Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 PLL Noise Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4 Clock Distribution 53
5 Measurement Results 55
5.1 Test Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 PLL Measurement Results . . . . . . . . . . . . . . . . . . . . . . 58
5.2.1 Bias Generator . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 Free-Running VCO . . . . . . . . . . . . . . . . . . . . . . 60
5.2.3 Closed-Loop PLL . . . . . . . . . . . . . . . . . . . . . . . 61
6 Conclusion 66
Bibliography 67
[1] C. H. Cheng, Y. C. Chen, J. D. Chen, D. K. Pan, K. T. Ting, and F. Y. Lin*, “3D pulsed chaos lidar system,” Opt. Express, vol. 26, No. 9, pp. 12230–12241, 2018.
[2] A. Tharayil Narayanan et al., "A Fractional-N Sub-Sampling PLL using a Pipelined Phase-Interpolator With an FoM of -250 dB," IEEE Journal of Solid-State Circuits, vol. 51, no. 7, pp. 1630-1640, July 2016.
[3] D. Dhar, P. T. M. van Zeijl, D. Milosevic, H. Gao and P. G. M. Baltus, "Analysis of the Effect of PFD Sampling on Charge-Pump PLL Stability," 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 2018, pp. 1-5.
[4] Jaeha Kim, M. A. Horowitz and Gu-Yeon Wei, "Design of CMOS adaptive-bandwidth PLL/DLLs: a general approach," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, no. 11, pp. 860-869, Nov. 2003.
[5] S. Docking and M. Sachdev, "An analytical equation for the oscillation frequency of high-frequency ring oscillators," IEEE Journal of Solid-State Circuits, vol. 39, no. 3, pp. 533-537, March 2004.
[6] A. Homayoun and B. Razavi, "Analysis of Phase Noise in Phase/Frequency Detectors," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 3, pp. 529-539, March 2013.
[7] J. G. Maneatis, "Low-jitter process-independent DLL and PLL based on self-biased techniques," IEEE Journal of Solid-State Circuits, vol. 31, no. 11, pp. 1723-1732, Nov. 1996.
[8] W. Rhee, "Design of high-performance CMOS charge pumps in phase-locked loops," 1999 IEEE International Symposium on Circuits and Systems (ISCAS), 1999, pp. 545-548 vol.2.
[9] G. Balamurugan et al., "A Scalable 5–15 Gbps, 14–75 mW Low-Power I/O Transceiver in 65 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 43, no. 4, pp. 1010-1019, April 2008.
[10] R. Ho et al., "High Speed and Low Energy Capacitively Driven On-Chip Wires," IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp. 52-60, Jan. 2008.
[11] Ju-Ming Chou, Yu-Tang Hsieh and Jieh-Tsorng Wu, "Phase averaging and interpolation using resistor strings or resistor rings for multi-phase clock generation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, no. 5, pp. 984-991, May 2006.
[12] M. Mansuri and C. -. K. Yang, "A low-power adaptive bandwidth PLL and clock buffer with supply-noise compensation," IEEE Journal of Solid-State Circuits, vol. 38, no. 11, pp. 1804-1812, Nov. 2003.
[13] Seung-Jun Bae, Hyung-Joon Chi, Young-Soo Sohn and H. . -J. Park, "A VCDL-based 60-760-MHz dual-loop DLL with infinite phase-shift capability and adaptive-bandwidth scheme," IEEE Journal of Solid-State Circuits, vol. 40, no. 5, pp. 1119-1129, May 2005.
[14] W. Yin, R. Inti, A. Elshazly, B. Young and P. K. Hanumolu, "A 0.7-to-3.5 GHz 0.6-to-2.8 mW Highly Digital Phase-Locked Loop With Bandwidth Tracking," IEEE Journal of Solid-State Circuits, vol. 46, no. 8, pp. 1870-1880, Aug. 2011.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *