|
[1] L. G. Hafemann, R. Sabourin and L. S. Oliveira, ”Offline handwritten signature verification - Literature review,” 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), Montreal, QC, p. 1-8, 2017. [2] M. E. Munich and P. Perona, ”Visual identification by signature tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 2, p. 200-217, 2003. [3] M. A. Ferrer, M. D. Cabrera, and A. Morales, ”Synthetic off-line signature image generation,” ICB, p. 1-7, 2013. [4] Available at http://www.gpds.ulpgc.es/Download/ [5] A. Kumar and K. Bhatia, ”A survey on offline handwritten signature verification system using writer dependent and independent approaches,” 2016 2nd International Conference on Advances in Computing, Communication, Automation (ICACCA) (Fall), Bareilly, p. 1-6, 2016. [6] L. G. Hafemann, R. Sabourin and L. S. Oliveira, ”Writer-independent feature learning for offline signature verification using deep convolutional neural networks,” 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, p. 2576-2583, 2016. [7] G. Eskander, R. Sabourin and E. Granger, ”Hybrid writer-independent writer-dependent offline signature verification system,” IET Biometrics, vol. 2, no. 4, p. 169-181, 2013. [8] G. Dimauro, S. Impedovo, G. Pirlo and A. Salzo, A, ”A multi-expert signature verification system for bankcheck processing,” IJPRAI 11 (05), p. 827-844, 1997. [9] Y. Serdouk, H. Nemmour and Y. Chibani, Y, ”Off-line handwritten signature verification using variants of local binary patterns,” Networking and Advanced Systems, 2nd International Conference, p.75, 2015. [10] H. Baltzakisa and N. Papamarkosb, ”A new signature verification technique based on a two stage neural network classifier,” Elsevier Journal Engineering Applications of Artificial Intelligence 14, p.95-103, 2001. [11] M. K. Kalera, S. N. Srihari and A. Xu, ”Offline signature verification and identification using distance statistics,” IJPRAI 18 (7) p.1339-1360, 2004. [12] A. Pansare and S. Bhatia, ”Handwritten signature verification using neural network,” International Journal of Applied Information Systems, vol. 1, no.2, p. 44-49, 2012. [13] E. Ozgunduz, T. Senturk and M. Elif Karsligil, ”Off-line signature verification and recognition by support vector machine,” EUSIPCO, 2005. [14] M. Diaz, M. A. Ferrer, S. Ramalingam and R. Guest, ”Investigating the common authorship of signatures by off-line automatic signature verification without the use of reference signatures,” IEEE Transactions on Information Forensics and Security, vol. 1, p.487-499, 2020. [15] N. Arab, H. Nemmour and Y. Chibani, ”MultiScale fusion of histogrambased features for robust off-line handwritten signature verification,” ACS 17th International Conference on Computer Systems and Applications, p.1-5, 2020. [16] A. Rateria and S. Agarwal, ”Off-line signature verification through machine learning,” 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Gorakhpur, p. 1-7, 2018. [17] K. He, X. Zhang, S. Ren and J. Sun, ”Deep residual learning for image recognition,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, p. 770-778, 2016. [18] J. Bromley, I. Guyon, Y. LeCun, E. S¨ackinger and R. Shah, ”Signature verification using a siamese time delay neural network,” int. J. Pattern Recognit, Artificial Intell, vol. 7, no. 4, p. 669-687, 1994. [19] F. Schro, D. Kalenichenko and J. P. Facenet, ”A unified embedding for face recognition and clustering,” CVPR, pp. 815-823, 2015. [20] S. Chopra, R. Hadsell and Y. LeCun, ”Learning a similarity metric discriminatively with application to face verification,” CVPR, p.539-546, 2005. [21] S. Dey, A. Dutta, J. I. Toledo, S. K. Ghosh, J. Llados et al., ”Signet: Convolutional siamese network for writer independent offline signature verification,” CoRR, abs/1707.02131, 2017. [22] N. Otsu, ”A threshold selection method from gray-level histograms,” Automatica, vol. 11, no. 285-296, p. 23-27, 1975. [23] C. Harris and M. Stephens, ”A combined corner and edge detector,” Alvey Vision Conference, p. 147-151, 1988. [24] S. Ioffe and C. Szegedy, ”Batch normalization: Accelerating deep network training by reducing internal covariate shift,” ICML, 2015. [25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, ”Dropout: A simple way to prevent neural networks from overfitting,” The Journal of Machine Learning Research, p. 1929-1958, 2014. [26] X. Glorot and Y. Bengio, ”Understanding the difficulty of training deep feedforward neural networks,” Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, p. 249-256, 2010. [27] D. P. Kingma and J. Ba, ”Adam: A method for stochastic optimization,” 3rd International Conference for Learning Representations, 2015. [28] L. Prechelt, ”Early stopping-but when?,” Neural Networks: Tricks of the trade, p. 553, 1998.
[29] H. Srinivasan, S.N. Srihari, M.J. Beal, ”Machine Learning for Signature Verification,” Computer Vision, Graphics and Image Processing. Lecture Notes in Computer Science, vol. 4338, 2006. [30] J. F. Vargas, C. M. Travieso, J. B. Alonso and M. A. Ferrer, ”Off-line signature verification based on gray level information using wavelet transform and texture features,” In International Conference on Frontiers in Handwriting Recognition, p.587-592, 2010. [31] M. B. Yilmaz, B. Yanikoglu, C. Tirkaz, and A. Kholmatov, ”Offline signature verification using classifier combination of HOG and LBP features,” 2011 International Joint Conference on Biometrics (IJCB), Washington, DC, 2011, p. 1-7.
[32] Howard, Andrew G., et al., ”Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint arXiv:1704.04861 (2017). [33] Shaikh, Mohammad Abuzar, et al, ”Attention based Writer Independent Handwriting Verification,” arXiv preprint arXiv:2009.04532 (2020).
|