|
1. Fields, K.B., et al., Prevention of running injuries. Current sports medicine reports, 2010. 9(3): p. 176-182. 2. 蜜雪.史丹克鮑加德, 運動百憂解:克服哀傷的最佳處方箋. 2019: 方舟文化. 3. Van Gent, R., et al., Incidence and determinants of lower extremity running injuries in long distance runners: a systematic review. British journal of sports medicine, 2007. 41(8): p. 469-480. 4. Van der Worp, M.P., et al., Injuries in runners; a systematic review on risk factors and sex differences. PloS one, 2015. 10(2): p. e0114937. 5. Jauhiainen, S., et al., A hierarchical cluster analysis to determine whether injured runners exhibit similar kinematic gait patterns. Scandinavian Journal of Medicine & Science in Sports, 2020. 30(4): p. 732-740. 6. Hesar, N.G.Z., et al., A prospective study on gait-related intrinsic risk factors for lower leg overuse injuries. British journal of sports medicine, 2009. 43(13): p. 1057-1061. 7. Thijs, Y., et al., Gait-related intrinsic risk factors for patellofemoral pain in novice recreational runners. British journal of sports medicine, 2008. 42(6): p. 466-471. 8. Van Ginckel, A., et al., Intrinsic gait-related risk factors for Achilles tendinopathy in novice runners: a prospective study. Gait & posture, 2009. 29(3): p. 387-391. 9. Wnuk, A., et al., Is there a relationship between functional flat foot and prevalence of non-insertional achilles tendinopathy in joggers?—a pilot study. Folia Medica Cracoviensia, 2017. 10. 張世玪, 張. 世代研究. 2010; Available from: https://highscope.ch.ntu.edu.tw/wordpress/?p=7992. 11. Bramah, C., et al., Is there a pathological gait associated with common soft tissue running injuries? The American journal of sports medicine, 2018. 46(12): p. 3023-3031. 12. Oh, H., G. Cha, and S. Oh, Samba: A real-time motion capture system using wireless camera sensor networks. Sensors, 2014. 14(3): p. 5516-5535. 13. Watari, R., et al., Determination of patellofemoral pain sub-groups and development of a method for predicting treatment outcome using running gait kinematics. Clinical biomechanics, 2016. 38: p. 13-21. 14. Luz, B.C., et al., Relationship between rearfoot, tibia and femur kinematics in runners with and without patellofemoral pain. Gait & posture, 2018. 61: p. 416-422. 15. Friedman, J., T. Hastie, and R. Tibshirani, The elements of statistical learning. Mentorship in Healthcare, 2nd edn. MK Update Ltd., New York, 2014. 16. Chen, I., et al., Identification of elite swimmers' race patterns using cluster analysis. International Journal of Sports Science & Coaching, 2007. 2(3): p. 293-303. 17. Ball, K. and R. Best, Different centre of pressure patterns within the golf stroke I: Cluster analysis. Journal of sports sciences, 2007. 25(7): p. 757-770. 18. Krizhevsky, A., I. Sutskever, and G.E. Hinton, Imagenet classification with deep convolutional neural networks. Communications of the ACM, 2017. 60(6): p. 84-90. 19. Karpathy, A., et al. Large-scale video classification with convolutional neural networks. in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2014. 20. Donahue, J., et al. Long-term recurrent convolutional networks for visual recognition and description. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. 21. Yue-Hei Ng, J., et al. Beyond short snippets: Deep networks for video classification. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. 22. Tran, D., et al. Learning spatiotemporal features with 3d convolutional networks. in Proceedings of the IEEE international conference on computer vision. 2015. 23. Oppermann, A. Artificial Intelligence vs. Machine Learning vs. Deep Learning. 2019; Available from: https://towardsdatascience.com/artificial-intelligence-vs-machine-learning-vs-deep-learning-2210ba8cc4ac. 24. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. Nature, 2015. 521(7553): p. 436-444. 25. James, G., et al., An introduction to statistical learning. Vol. 112. 2013: Springer. 26. Machine Learning Classification – 8 Algorithms for Data Science Aspirants. Available from: https://data-flair.training/blogs/machine-learning-classification-algorithms/. 27. Wright, R.E., Logistic regression. 1995. 28. Huang, T. 機器/統計學習: 羅吉斯回歸(Logistic regression). 2018; Available from: 機器/統計學習: 羅吉斯回歸(Logistic regression). 29. Jiang, M., et al., Text classification based on deep belief network and softmax regression. Neural Computing and Applications, 2018. 29(1): p. 61-70. 30. Yann LeCun, C.C., Christopher J.C. Burges. THE MNIST DATABASE of handwritten digits. 1998; Available from: http://yann.lecun.com/exdb/mnist/. 31. Veetil, S. and Q. Gao, Real-time network intrusion detection using Hadoop-based Bayesian classifier, in Emerging Trends in ICT Security. 2014, Elsevier. p. 281-299. 32. Subasi, A., Practical Machine Learning for Data Analysis Using Python. 2020: Academic Press. 33. Xiaozhou, Y. Linear Discriminant Analysis, Explained. 2020; Available from: https://towardsdatascience.com/linear-discriminant-analysis-explained-f88be6c1e00b. 34. Gholami, R. and N. Fakhari, Support vector machine: principles, parameters, and applications, in Handbook of Neural Computation. 2017, Elsevier. p. 515-535. 35. CH.Tseng. Support Vector Machines 支持向量機. 2017; Available from: https://chtseng.wordpress.com/2017/02/04/support-vector-machines-%E6%94%AF%E6%8C%81%E5%90%91%E9%87%8F%E6%A9%9F/. 36. Nadkarni, P., Clinical Research Computing: A Practitioner's Handbook. Core Technologies: Data Mining and “Big Data”. 2016: Academic Press. 37. Islam, M.J., et al. Investigating the performance of naive-bayes classifiers and k-nearest neighbor classifiers. in 2007 International Conference on Convergence Information Technology (ICCIT 2007). 2007. IEEE. 38. Allibhai, E. Building a k-Nearest-Neighbors (k-NN) Model with Scikit-learn. 2018; Available from: https://towardsdatascience.com/building-a-k-nearest-neighbors-k-nn-model-with-scikit-learn-51209555453a. 39. Varshney, P. K-Nearest Neighbour Explained-Part 2. 2020; Available from: K-Nearest Neighbour Explained-Part 2. 40. Leonard, L.C., Web-Based Behavioral Modeling for Continuous User Authentication (CUA), in Advances in Computers. 2017, Elsevier. p. 1-44. 41. Ganegedara, T. Intuitive Guide to Understanding Decision Trees. 2018; Available from: https://towardsdatascience.com/light-on-math-machine-learning-intuitive-guide-to-understanding-decision-trees-adb2165ccab7. 42. Daoud, M. and M. Mayo, A survey of neural network-based cancer prediction models from microarray data. Artificial intelligence in medicine, 2019. 97: p. 204-214. 43. Santosa, B. Multiclass classification with cross entropy-support vector machines. in The Third Information Systems International Conference. 2015. 44. Sra, S., S. Nowozin, and S.J. Wright, Optimization for Machine Learning. 2012: MIT Press. 45. RUDER, S. An overview of gradient descent optimization algorithms. 2016; Available from: https://ruder.io/optimizing-gradient-descent/index.html#fn1. 46. Simone. Stochastic Gradient Descent on your microcontroller. 2020; Available from: https://eloquentarduino.github.io/2020/04/stochastic-gradient-descent-on-your-microcontroller/. 47. Duchi, J., E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 2011. 12(7). 48. Zeiler, M.D., Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012. 49. Tieleman, T. and G. Hinton, Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural networks for machine learning, 2012. 4(2): p. 26-31. 50. Kingma, D.P. and J. Ba, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. 51. Selfridge, O., Symposium on the mechanisation of thought processes. 1959. 52. Werbos, P., Beyond regression:" new tools for prediction and analysis in the behavioral sciences. Ph. D. dissertation, Harvard University, 1974. 53. Rumelhart, D.E., G.E. Hinton, and R.J. Williams, Learning representations by back-propagating errors. nature, 1986. 323(6088): p. 533-536. 54. Dauphin, Y., et al., Identifying and attacking the saddle point problem in highdimensional non-convex optimization in Advances in neural information processing systems. 2014. 55. Hinton, G.E. and R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. science, 2006. 313(5786): p. 504-507. 56. Mohamed, A.-r., G.E. Dahl, and G. Hinton, Acoustic modeling using deep belief networks. IEEE transactions on audio, speech, and language processing, 2011. 20(1): p. 14-22. 57. Dahl, G.E., et al., Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Transactions on audio, speech, and language processing, 2011. 20(1): p. 30-42. 58. Stewart, M. Simple Introduction to Convolutional Neural Networks. 2019; Available from: https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac. 59. Chris. Using Constant Padding, Reflection Padding and Replication Padding with TensorFlow and Keras. 2020; Available from: https://www.machinecurve.com/index.php/2020/02/10/using-constant-padding-reflection-padding-and-replication-padding-with-keras/. 60. He, K., et al. Deep residual learning for image recognition. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. 61. Ji, S., et al., 3D convolutional neural networks for human action recognition. IEEE transactions on pattern analysis and machine intelligence, 2012. 35(1): p. 221-231. 62. Mittal, A. Understanding RNN and LSTM. 2019; Available from: https://towardsdatascience.com/understanding-rnn-and-lstm-f7cdf6dfc14e. 63. Olah, C. Understanding LSTM Networks. 2015; Available from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/. 64. Shorten, C. and T.M. Khoshgoftaar, A survey on image data augmentation for deep learning. Journal of Big Data, 2019. 6(1): p. 60. 65. 許哲豪. 【AI Column】深度學習,從「框架」開始學起. 2018; Available from: https://makerpro.cc/2018/06/deep-learning-frameworks/. 66. renewang. 深度學習裡的冰與火之歌 : Tensorflow vs PyTorch系列 第 2 篇. 2019; Available from: https://ithelp.ithome.com.tw/articles/10216440. 67. Varma. Learning Anatomy. 2011; Available from: https://varmaanatomy.blogspot.com/2011/08/anatomical-positions-planes.html. 68. Stan. Running Biomechanics Primer. 2016; Available from: http://therunningstan.blogspot.com/2016/01/running-biomechanics-primer.html.
|