|
[1] arxiv.org e-print archive. [2] Diego Ardila, Atilla P Kiraly, Sujeeth Bharadwaj, Bokyung Choi, Joshua J Reicher, Lily Peng, Daniel Tse, Mozziyar Etemadi, Wenxing Ye, Greg Cor- rado, David P Naidich, and Shravya Shetty. Author correction: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med., 25(8):1319, August 2019. [3] Zhengping Che, David C. Kale, Wenzhe Li, Mohammad Taha Bahadori, and Yan Liu. Deep computational phenotyping. In Longbing Cao, Chengqi Zhang, Thorsten Joachims, Geoffrey I. Webb, Dragos D. Margineantu, and Graham Williams, editors, Proceedings of the 21th ACM SIGKDD International Con- ference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, August 10-13, 2015, pages 507–516. ACM, 2015. [4] Edward Choi, Cao Xiao, Walter F. Stewart, and Jimeng Sun. Mime: Mul- tilevel medical embedding of electronic health records for predictive health- care. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grau- man, Nicol`o Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural Informa- tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montr ́eal, Canada, pages 4552–4562, 2018.
[5] Edward Choi, Zhen Xu, Yujia Li, Michael Dusenberry, Gerardo Flores, Emily Xue, and Andrew M. Dai. Learning the graphical structure of electronic health records with graph convolutional transformer. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 606–613. AAAI Press, 2020. [6] Edward Choi, Zhen Xu, Yujia Li, Michael W. Dusenberry, Gerardo Flores, Yuan Xue, and Andrew M. Dai. Graph convolutional transformer: Learning the graphical structure of electronic health records. CoRR, abs/1906.04716, 2019. [7] Enming Cui, Zhuoyong Li, Changyi Ma, Qing Li, Yi Lei, Yong Lan, Juan Yu, Zhipeng Zhou, Ronggang Li, Wansheng Long, and Fan Lin. Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics. Eur. Radiol., 30(5):2912–2921, May 2020. [8] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc'aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le, and Andrew Y. Ng. Large scale distributed deep networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1223–1231. Curran Associates, Inc., 2012. [9] Nabil Elshafeey, Aikaterini Kotrotsou, Ahmed Hassan, Nancy Elshafei, Islam Hassan, Sara Ahmed, Srishti Abrol, Anand Agarwal, Kamel El Salek, Samuel Bergamaschi, Jay Acharya, Fanny E Moron, Meng Law, Gregory N Fuller, Jason T Huse, Pascal O Zinn, and Rivka R Colen. Multicenter study demon-
strates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma. Nat. Commun., 10(1):3170, July 2019. [10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press, 2016. [11] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. CryptoDL: Deep neural networks over encrypted data. November 2017. [12] P. Kairouz, H. B. McMahan, et al. Foundations and trends in machine learn- ing. 14(1-2):1–210, 2021. [13] Georgios Kaissis, Sebastian Ziegelmayer, Fabian Loh ̈ofer, Hana Alg ̈ul, Matthias Eiber, Wilko Weichert, Roland Schmid, Helmut Friess, Ernst Rum- meny, Donna Ankerst, Jens Siveke, and Rickmer Braren. A machine learning model for the prediction of survival and tumor subtype in pancreatic ductal adenocarcinoma from preoperative diffusion-weighted imaging. Eur. Radiol. Exp., 3(1):41, October 2019. [14] Georgios Kaissis, Sebastian Ziegelmayer, Fabian Loh ̈ofer, Hana Alg ̈ul, Matthias Eiber, Wilko Weichert, Roland Schmid, Helmut Friess, Ernst Rum- meny, Donna Ankerst, Jens Siveke, and Rickmer Braren. A prospectively validated machine learning model for the prediction of survival and tumor subtype in pancreatic ductal adenocarcinoma. May 2019. [15] Jakub Koneˇcn ́y, H Brendan McMahan, Felix X Yu, Peter Richt ́arik, Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies for improving communication efficiency. October 2016.
[16] A. Li, L. Zhang, J. Wang, F. Han, and X.-Y. Li. Privacy-preserving efficient federated-learning model debugging. IEEE Transactions on Parallel and Dis- tributed Systems, 33(10):2291–2303, 2021. [17] Xing Li, Dexin Chen, Chunyan Li, and Liangmin Wang. Secure data ag- gregation with fully homomorphic encryption in large-scale wireless sensor networks. Sensors (Basel), 15(7):15952–15973, July 2015. [18] Haonan Lu, Mubarik Arshad, Andrew Thornton, Giacomo Avesani, Paula Cunnea, Ed Curry, Fahdi Kanavati, Jack Liang, Katherine Nixon, Sophie T Williams, Mona Ali Hassan, David D L Bowtell, Hani Gabra, Christina Fo- topoulou, Andrea Rockall, and Eric O Aboagye. A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer. Nat. Com- mun., 10(1):764, February 2019. [19] Lingjuan Lyu, Han Yu, and Qiang Yang. Threats to federated learning: A survey. CoRR, abs/2003.02133, 2020. [20] Ryan McDonald, Keith Hall, and Gideon Mann. Distributed training strate- gies for the structured perceptron. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, HLT ’10, pages 456–464, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics. [21] Scott Mayer McKinney, Marcin Sieniek, Varun Godbole, Jonathan Godwin, Natasha Antropova, Hutan Ashrafian, Trevor Back, Mary Chesus, Greg S Corrado, Ara Darzi, Mozziyar Etemadi, Florencia Garcia-Vicente, Fiona J Gilbert, Mark Halling-Brown, Demis Hassabis, Sunny Jansen, Alan Karthike- salingam, Christopher J Kelly, Dominic King, Joseph R Ledsam, David Mel-
nick, Hormuz Mostofi, Lily Peng, Joshua Jay Reicher, Bernardino Romera- Paredes, Richard Sidebottom, Mustafa Suleyman, Daniel Tse, Kenneth C Young, Jeffrey De Fauw, and Shravya Shetty. Addendum: International eval- uation of an AI system for breast cancer screening. Nature, 586(7829):E19, October 2020. [22] Sungjin Park, Seongsu Bae, Jiho Kim, Tackeun Kim, and Edward Choi. Graph-text multi-modal pre-training for medical representation learning. CoRR, abs/2203.09994, 2022. [23] Katja Pinker, Joanne Chin, Amy N Melsaether, Elizabeth A Morris, and Linda Moy. Precision medicine and radiogenomics in breast cancer: New approaches toward diagnosis and treatment. Radiology, 287(3):732–747, June 2018. [24] Daniel Povey, Xiaohui Zhang, and Sanjeev Khudanpur. Parallel training of deep neural networks with natural gradient and parameter averaging. CoRR, 2014. [25] Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta, Tony Duan, Daisy Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya, Matthew P Lungren, and Andrew Y Ng. CheXNet: Radiologist-level pneu- monia detection on chest x-rays with deep learning. November 2017. [26] Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger Roth, Shadi Albarqouni, Spyridon Bakas, Mathieu N Galtier, Bennett Landman, Klaus Maier-Hein, Sebastien Ourselin, Micah Sheller, Ronald M Summers, Andrew Trask, Daguang Xu, Maximilian Baust, and M Jorge Cardoso. The future of digital health with federated learning. March 2020.
[27] Rhema Vaithianathan, Diana Benavides Prado, Eric E. Dalton, Alexandra Chouldechova, and Emily Putnam-Hornstein. Using a machine learning tool to support high-stakes decisions in child protection. AI Mag., 42(1):53–60, 2021. [28] Bino Varghese, Frank Chen, Darryl Hwang, Suzanne L Palmer, Andre Luis De Castro Abreu, Osamu Ukimura, Monish Aron, Manju Aron, Inderbir Gill, Vinay Duddalwar, and Gaurav Pandey. Objective risk stratification of prostate cancer using machine learning and radiomics applied to multi- parametric magnetic resonance images. In Proceedings of the 11th ACM In- ternational Conference on Bioinformatics, Computational Biology and Health Informatics, New York, NY, USA, September 2020. ACM. [29] Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic averaging sgd. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 685–693. Curran Associates, Inc., 20
|